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T1: Solenoid and loop
Part a. Solution I. According to Newton’s third law, the
force acting on the solenoid is equal in magnitude, but
opposite in direction to the force acting on the loop. The
latter can be obtained from Lorentz’s law by summation
of infinitesimal forces F⃗ = J∆l⃗ × B⃗ acting on the indi-
vidual loop elements ∆l⃗, where J = E/R is the current
in the loop.

Since the solenoid is long and thin, the magnetic field
lines inside it are directed in +z direction, and escape
only from the immediate vicinity of its ends. The mag-
netic field outside the solenoid is vortex-free and source-
free. The same requirements are satisfied by the electric
field in empty space. Hence, the magnetic field outside
the solenoid can be well approximated by a field created
by two magnetic poles: a North pole residing close to
point O1 and a South pole located near to O2. The flux
Φ emerging from the North pole (and the flux entering
the South pole) is the same as the flux passing through
the solenoid’s cross-section:

Φ = BinA = µ0
NI

ℓ
A .

When the endpoint O1 of the solenoid is placed in the
loop centre O, the magnetic field of the other end (O2)
near the loop is negligible. The field created by the North
pole located at O1 is pointing radially outwards, and its
magnitude at the loop circumference is (from spherical
symmetry):

B(r) =
Φ

4πr2
=

µ0

4π

NIA

ℓr2
.

The forces acting on all elements of the loop (and also
the net force) point in the −z direction, which can be
expected also from the same current directions (i.e. the
loop and the solenoid attract each other). Hence, the re-
action force acting on the solenoid points in the +z di-
rection, and its magnitude is given by:

F1 =
E
R

· 2πr · µ0

4π

NIA

ℓr2
=

µ0NIAE
2ℓRr

.

When the endpoint O2 is located at the centre of the
loop, the magnetic field produced by the South pole ex-
erts a force on the loop. Since this field is directed radi-
ally inward, the force acting on the solenoid is the same
in magnitude, but opposite in direction (−z) as the force
calculated above:

F⃗2 = −F⃗1 .

Grading scheme: T1 part a., Solution I.
using Newton’s third law 0.5 p
idea of approximating the outer field
with magnetic poles 0.5 p, and justi-
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Solution II. In this solution the force acting on the
solenoid is calculated, as the force acting on the mag-
netic pole placed at the centre of the current-carrying
loop. For this we need to find an expression for the mag-
netic pole strength (ormagnetic charge)Qm, which is de-
fined as the ratio of the force and the magnetic field.

The total dipolemomentm of the solenoid is the prod-
uct of the number of turns and the dipole moment IA of
each turn:

m = NIA .

This can be also expressed with the magnetic pole
strength and the distance of the poles: m = Qmℓ . From
this we arrive to the expression

Qm =
NIA

ℓ
=

Φ

µ0

where Φ is the total flux emerging from the pole (see so-
lution I).

Note. The same result can be obtained from the analogy
between electrostatic and magnetostatic fields. The Coulomb
force between two point charges ±Q can be derived from the
principle of virtual work. The force is the derivative of the in-
teraction part of the field energy with respect to the distance
between the charges. The force between twomagnetic charges
±Qm can be also calculated this way. From the expressions of
electric andmagnetic energy densitieswe can conclude the for-
mula of the magnetic interaction force:

wE = 1
2
ε0E

2 ←→ wB = 1
2µ0

B2 ,

FE = 1
4πε0

Q2

r2
←→ FB = µ0

4π

Q2
m

r2
.

As it can be seen, the well-known formulae known in electro-
statics canbe also used inmagnetostaticswith the substitutions
ε−1
0 ←→ µ0, E ←→ B, Q ←→ Qm. Carrying on this analogy the
magnetic pole strength can be figured out:

Q = ε0Ψ ←→ Qm =
Φ

µ0
=

N

ℓ
IA ,

where Ψ and Φ are the electric and magnetic flux for a closed
surface containing the electric and magnetic charge, respec-
tively.

When endpoint O1 of the solenoid is located at point
O, a North pole resides at the centre of the loop. Here
the magnetic field created by the loop can be expressed
from Biot–Savart-law:

B
(at center)
loop =

µ0J

2r
=

µ0E
2Rr

,

pointing in the +z direction. So the magnitude of the
force acting on this end of the solenoid is:

F1 = QmB
(at center)
loop =

µ0ENIA

2ℓRr
,

and it is directed to +z. When the endpoint O2 is located
at the center of the loop, the force acting on the South
pole should be calculated, resulting a force of samemag-
nitude, but opposite direction.
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Solution III. Some of themagnetic field lines created
by the loop enter into the near end O1 of the solenoid;
this entering flux is given by

Φin = B
(at center)
loop A =

µ0J

2r
A =

µ0EA
2Rr

.

Since the end O2 is far from the loop, the flux created by
the loop escaping there is negligibly small. This means
that almost all the flux Φin escapes from the solenoid
through its side.

Denote the radial component of the magnetic field
vector produced by the current-carrying loop at the
perimeter of the ith turn of the solenoid by Bi. Only
this component contributes to the net force acting on the
solenoid, as the axial component produces a radial force
which is cancelled due to rotational symmetry. The axial
force acting on the ith turn of the solenoid is given by

F1,i = 2
√
AπIBi ,

where 2
√
Aπ is the circumference of one turn, and the

force points in the +z direction. Summing up both sides
gives the net force:

F1 =
∑
i

Fi =
∑
i

2
√
AπIBi

Take out the factor I from the summation and insert 1
written in the unusual way (ℓ/N) · (N/ℓ):

F1 = I
N

ℓ

∑
i

2
√
Aπ

ℓ

N
Bi .

The sum on the right hand side is the flux escaping
through the side of the solenoid, which equals Φin, so the
force:

F1 = I
N

ℓ
Φin =

µ0EANI

2Rrℓ
,

which agrees with the previous solutions.
Grading scheme: T1 part a., Solution III.
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0.5 p
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Solution IV. The force acting on a current loop of
magnetic moment m⃗ placed in magnetic field B⃗ is given
by ∇⃗(m⃗ · B⃗). Divide the solenoid into short circular coils
of equal length ∆ℓ, then the magnetic moment of each
short coil is

∆m⃗ = IA
N∆ℓ

ℓ
e⃗z ,

where e⃗z denotes the unit vector in z-direction. This
magnetic moment is parallel to the field B⃗loop created
by the large current-carrying loop, so the force acting on
each short segment of the solenoid in z-direction can be
written as:

∆F1 = ∆m
dBloop
dz = IA

N∆ℓ

ℓ

dBloop
dz

The total force on the solenoid can be determined from
integration of the force contributions along the solenoid:

F1 =

∫ 0

−ℓ

dℓ ∆F1

∆ℓ
= IA

N

ℓ

(
Bloop(0)−Bloop(−ℓ)

)
.

Using the Biot–Savart-law we can compute the magnetic
fieldBloop(z) of the current-carrying loop along the z-axis
to

Bloop(z) =
µ0E
2R

r2

(z2 + r2)3/2
.

This expression for Bloop yields

F1 =
µ0EANIr2

2Rℓ

(
1

r3
− 1

(ℓ2 + r2)3/2

)
ℓ≫r
≈ µ0EANI

2ℓRr
,

and F1 is directed to +z. From a similar calculation we
get F⃗2 = −F⃗1.

Grading scheme: T1 part a., Solution IV.
idea of dividing the solenoid into
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1.0 p
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ment

0.5 p

expressing the force on a segment by
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calculating the field of the current-
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(alternatively, arguing that only the
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p and calculating this field 0.5 p)
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gral)
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1.0 p

Total for part a.: 5.5 p
Note: Using the idea of dividing the solenoid into

small segments other solutions are possible as well
(e.g. considering small dipole contributions). In this case
the grading scheme of Solution IV should be adapted ac-
cordingly.
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Solution V. In this solution we relate the force acting
on the solenoid to the change in energy of the system.
Investigate the case when point O1 is located at O first.
Due to the same current directions, the magnetic force
F⃗1 acting on the solenoid points in direction +z. While
keeping the solenoid in equilibrium with external force
−F⃗1, let it move by a small displacement δz in the posi-
tive z direction. The work done by the external force is
equal to the change in energy of the system:

−F⃗1 · δz⃗ = −F1δz = δEtotal, .

We should be aware of the fact that the system is not
closed: there is also a battery and a current source in-
cluded in the circuits. Hence, δEtotal contains the change
in field energy and the change of energy of the power
sources:

δEtotal = δEfield + δEsources .

Since the force does not depend on what kind of power
supplies we have, let us replace the battery with a cur-
rent source providing constant current J = E/R.

Now we find a relation between δEfield and δEsources
The energy stored in the field can be expressed as

Efield =
1

2
L1I

2 +
1

2
L2J

2 + L12IJ ,

where L1 is the inductance of the solenoid, L2 is that of
the loop and L12 is the mutual inductance of the system.
Upon small displacement δz, only the last term changes,
so

δEfield = δL12 · IJ .

The small displacement results in a change of the flux
enclosed by the loop and the solenoid. The flux created
by the solenoid on the loop is L12I , and the flux created
by the loop through the solenoid is L21J = L12J (here
we used the symmetry property of mutual inductance).
During the short time δt of the displacement δz, the e.m.f.
induced in the loop (V loop

ind ) and the solenoid (V solenoid
ind ) can

be expressed with Faraday’s law:

V
loop
ind = −δL12

δt
I , V solenoid

ind = −δL12

δt
J .

In order to keep the current in the circuits constant, the
current sources need to provide an additional power, so
they give away extra energy (in addition to Joule heat).
This energy change of the sources is given by:

δEsources =
(
V

loop
ind J + V solenoid

ind I
)
δt .

Using the previous results we finally get:

δEsources = −2δL12IJ = −2δEfield ,

which means δEtotal = −δEfield, and hence F1δz =
δEfield = δL12IJ .

Note 1. Naively, one might think that we get the result
δEtotal = δEfield if we imagine superconducting wires without
power supplies. One can show with detailed calculation that
in that case the currents in the loop and the coil change, as the
total flux enclosed by a superconducting circuit must remain
constant. The correct physical justification of the appearing
negative sign is an important part of the solution.

Now we calculate the change in mutual inductance
δL12. The small displacement δz can be imagined as we
take a short segment from the tail O2 of the coil (con-
sisting of Nδz/ℓ turns) and move it to the head O1. As
a result, the flux produced by the loop on the solenoid
increases by

δΦ12 = δL21J =
µ0J

2r︸︷︷︸
B(at center)

loop

A
N

ℓ
δz .

From this we get:

F1 =
δL12IJ

δz
=

µ0ENAI

2ℓRr
.

If the tail O2 of the solenoid is located at point O, the
coefficient of mutual inductance decreases upon small
displacement, which results in F⃗2 = −F⃗1.

Note 2. The field energy can be also calculated from the en-
ergy density integrated for the whole space. Instead of calcu-
lating the total field energy, it is easier to find its change using
the same idea presented above, i.e. take a segment of length
δz from the tail and move it to the head of the solenoid. As-
suming ℓ ≫ δz ≫

√
A, the field created by the solenoid inside

that segment is µ0NI/ℓ (because the field differs from this only
at distance ∼

√
A from the ends). At the end we get the same

result for the change in field energy using the expression:

δEfield =
1

2µ0

[
(B(at centre)

loop +Bsol)
2 − (B(at centre)

loop )2 −B2
sol
]
Aδz .

Note 3. A third possibility is to calculate the potential en-
ergy change of the displaced few turns of the solenoid. The
magnetic moment of a segment of length δz is m⃗ = e⃗zIANδz/ℓ,
and its energy in external field is Epot = −m⃗B⃗. Important to
highlight that this potential energy already contains the factor
of −1 discussed at the beginning of the solution, so the force
acting on the solenoid can be expressed as

F1 = −δEpot

δz
.

The external field is the superposition of the field B⃗loop cre-
ated by the loop and the field B⃗sol created by the coil (note that
this latter contains a factor of 1/2 compared to the field in the
middle of the solenoid). Since B⃗sol is the same at the two ends
O1 and O2, the energy change is:

δEpot = −m⃗B⃗(at center)
loop − m⃗B⃗loop(z = ℓ) .

The second term can be neglected, and we get

δEpot = −
IANδz

ℓ

µ0E
2Rr

,

which gives the same answer for F1 as the other ideas.

Grading scheme: T1 part a., Solution V.
Equating force to energy change in
system

0.5 p

Formulating energy equation (if
sources are missing 0.2 p)

0.5 p

expressing δEfield through contribu-
tions from currents and an interac-
tion term

1.0 p

deriving that δEsources = −2δEfield 1.0 p
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Part b. In order to plot a graph displaying the im-
portant features, it is beneficial to make some calcula-
tions. The problem text does not specify the zero point
of time, so take t = 0 in the moment when the center of
the solenoid is located at pointO. Thismeans that at time
t the head O1 of the solenoid is located at z1 = ℓ/2 + vt,
while the tail O2 is located at z2 = −ℓ/2 + vt.

The current flowing in the loop at an arbitrary mo-
ment of time is given by

J(t) =
E + Vind(t)

R
,

where Vind(t) is the induced electromotive force in the
loop as a function of time. Two different approaches can
be found belowwhich give an analytical formula for this
induced e.m.f.

Solution I.Wemay again approximate the magnetic
field outside the solenoid by a field created by two mag-
netic poles at z1 and z2, respectively. The resulting mag-
netic flux through the loop can be calculated by consid-
ering the solid angle the loop extends as seen from either
of the poles. Using the total magnetic flux of the poles as
calculated in Solution I for part a. we get

Φloop =
µ0NIA

2 ℓ

{
z1√

z21 + r2
+ 1− z2√

z22 + r2
− 1

}
.

Using this result and ż1 = ż2 = v the induced e.m.f. can be
calculated with Faraday’s law Vind = −dΦloop/dt , which
gives

Vind = −v
µ0NIA

2 ℓ

{
r2

(z21 + r2)3/2
− r2

(z22 + r2)3/2

}
.

Solution II. The rate of change of flux produced by
the solenoid through the loop can be expressed in terms
of themutual inductanceL12 of the solenoidwith respect
to the loop:

dΦ12

dt =
d
dt (L12I) = I

dL12

dt .

Using the symmetry property of mutual inductance
(L12 = L21), instead of calculating L̇12 let us find the
time derivative of L21, i.e. the mutual inductance of the
loop with respect to the solenoid. For this, imagine that
the current in the loop is constant J0, and calculate the
change of fluxproducedby the loop through the solenoid
during a short amount of time dt! The small displace-
ment vdt of the solenoid can be considered as moving a
short segment of length vdt from the tail to the head. The
change in flux in this segment is given by

dΦ21 = dL21J0 = vdtNA

ℓ

(
Bloop(z1)−Bloop(z2)

)
.

Using the formula for Bloop(z) obtained from Biot–
Savart-law (see Solution IV for part a.) we get

dL21

dt = v
NA

ℓ

µ0

2

[
r2

(z21 + r2)3/2
− r2

(z22 + r2)3/2

]
.

From this the induced e.m.f. Vind = IL̇12 = IL̇21 can be
expressed:

Vind(t) = −dΦ21

dt = −v
µ0NIA

2ℓ

[
r2

(z21 + r2)3/2
− r2

(z22 + r2)3/2

]

Although the analytical result gives the correct ex-
pression for the current flowing in the loop, the task in
part b. was to plot the graph.

The graph should reflect the most important features
of the function. First, Vind(t) is an odd function, i.e.
Vind(−t) = −Vind(t). For t < 0 the flux through the loop
increases meaning that Vind < 0 and J < E/R, while
for t > 0 the flux decreases, which results Vind > 0 and
J > E/R.

In different ranges of time, Vind(t) behaves very dif-
ferently. For times t ≪ −ℓ/(2v) and t ≫ ℓ/(2v) the
solenoid is very far (approximately at distance vt) from
the current loop, and its field can be approximated by
dipole field (proportional to v−3t−3). The time derivative
of the field is proportional to the induced e.m.f. in the
loop, so in this time range Vind(t) ∝ t−4, and has very
small value. The same result can be concluded from the
Taylor expansion of the complete analytical formula for
Vind.

When t ≈ ±ℓ/(2v) (with the accuracy of r/v) the effect
of one pole of the solenoid can be neglected. The abso-
lute value of the induced e.m.f. is maximal here:

|Vind| = v
µ0NIA

2ℓr
,

so the maximal and minimal value of the current are

Jmin =
E
R

− v
µ0NIA

2Rrℓ
, Jmax =

E
R

+ v
µ0NIA

2Rrℓ
.

Around the maximum Vind is a quadratic function of
time, as it can be proved with expanding the complete
analytical formula.

When the centre of the solenoid is close to the cen-
tre of the loop, i.e. |t| ≪ ℓ/(2v), the flux barely changes,
so Vind ≈ 0. A more careful analysis gives a very weak
linear dependence on time.

The statements above are summarized in the table
below.

time range Vind(t) J(t)

t ≪ −ℓ/(2v) small, ∝ −1/t4 ≈ E/R

t ≈ −ℓ/(2v) large, ∝ −
(
t+ ℓ

2v

)2
Jmin, dip

|t| ≪ ℓ/(2v) negligible (∝ t) ≈ E/R

t ≈ ℓ/(2v) large, ∝
(
t− ℓ

2v

)2
Jmax, peak

t ≫ ℓ/(2v) small, ∝ 1/t4 ≈ E/R
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− ℓ
2v

0 ℓ
2v

E
R − vµ0NIA

2Rrℓ

E
R

E
R + vµ0NIA

2Rrℓ

ℓ
v

r
v
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J
/a
.u
.

Figure 1: Qualitative graph of J as a function of time for
ℓ = 5r.

Grading scheme: T1 part b.
relating J(t) to Vind or other suitable
quantity (independent of result in a.)

0.5 p

the J(t) graph is smooth everywhere
(if graph does not capture whole do-
main including asymptotics, 0 p.)

0.5 p

J(t) ≈ E/R, except if t ≈ ±ℓ/(2v) (if
J(t) ≈ E/R only asymptotically, 0.2
p)

0.5 p

J(t) − E/R is clearly an odd function
(if reasoning is missing, 0.2 p)

0.5 p

J(t)has aminimumfirst, then amax-
imum ℓ/v time later (if reversed or
the time is incorrect, 0 p)

1.0 p

analytical formula for Jmin and Jmax
(either approximate or exact)

1.0 p

it is indicated that the duration of the
peak and dip is in the range of r/v

0.5 p

if J(z) instead of J(t) is plotted or la-
bels are missing on the axes 0.5 p are
deducted from part b.

(-0.5 p)

Total for part b.: 4.5 p
If no graph is drawn: max. 0.5 p for relating J(t) to Vind
and 1.0 p for Jmin and Jmax (or a general formula without
evaluation of min and max) are given.

Additional general guidelines for grading T1:
• Grading should always follow one of the solutions de-
scribed. If approaches for solutions are mixed the one
resulting in the highest marks is considered.

• Granularity for marks is 0.1 p.
• A simple numerical error resulting from a typo is pun-
ished by 0.1 p unless the grading scheme explicitly says
otherwise.

• Errors which cause dimensionally wrong results are
punished by at least 50 % of the marks if dimensions
can easily be checked. In more complicated cases less
marks may be deducted.

• Propagating errors are not punished repeatedly un-
less they either lead to considerable simplifications or
wrong results whose validity can easily be checked.

T2: Mechanical accelerator

φ

Relative to Earth

lP

P

R

r

P

�

v

Rotating system of reference

Q

Figure 2: Mechanical accelerator

Solution I. Part 1: Thread in contact with the cylinder.
The velocity of themass P can be decomposed into longi-
tudinal component vl along the thread, and a transverse
component v⊥ perpendicular to the thread:

v⃗ = vle⃗1 + v⊥e⃗2

where the unit vectors e⃗1 and e⃗2 are parallel and per-
pendicular to the thread, respectively (see Fig. 2). Since
the thread is inextensible, the longitudinal component is
constant: vl = −u, i.e.

v⃗ = −ue⃗1 + v⊥e⃗2

The acceleration of P is, respectively:

a⃗ =
dv⃗

dt
= −u

de⃗1
dt

+ v⊥
de⃗2
dt

+
dv⊥
dt

e⃗2

Vectors e⃗1 and e⃗2 form a coordinate system, which ro-
tates as a rigid object with an angular velocity:

ω⃗ =
dϕ

dt
e⃗3

where e⃗3 = e⃗1 × e⃗2 is a unit vector perpendicular to the
plane of motion, i.e. along the cylinder axis, and ϕ is the
angle between the thread and the X-axis. Therefore, the
time derivatives of the basis vectors are:

de⃗1
dt

= ω⃗ × e⃗1 =
dϕ

dt
e⃗2

and
de⃗2
dt

= ω⃗ × e⃗2 = −dϕ

dt
e⃗1

In this way, the acceleration of P can be represented in
terms of the angular velocity:

a⃗ = −v⊥
dϕ

dt
e⃗1 +

(
−u

dϕ

dt
+

dv⊥
dt

)
e⃗2

The only force, acting on P , is the tension of the thread.
Therefore, the component of the acceleration perpendic-
ular to the tread, i.e. along e⃗2, is null:

−u
dϕ

dt
+

dv⊥
dt

= 0

After integration over time, we obtain a relationship be-
tween the transverse velocity, acquired by P , and the an-
gle of rotation of the thread:

v⊥ = uϕ
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The end of the tread turns at a total angle of 2πN until
the tread detaches from the cylinder completely. There-
fore, the transverse component of the velocity of P at the
moment of detachment is:

v⊥ = 2πNu

and the magnitude of velocity:

v =
√
v2l + v2⊥ = u

√
(2πN)2 + 1

Part 2: Thread detached fom the cylinder. This ex-
pression, however, still does not represent the maxi-
mum velocity attained by P . In the frame of reference
of the free end of the thread, the mass continues to ro-
tate about the end of the thread. The velocity of P , rel-
ative to Earth, reaches maximum in the moment when
the thread reaches right angle with X-axis, i.e. the trans-
verse component of velocity of P aligns with u⃗:

vmax = u(2πN + 1)

Solution II. Part 1: Thread in contact with the cylin-
der. Consider a point Q on the end of the thread be-
ing pulled that coincided with P at the moment when
it touched the cylinder. Consider motion of the thread
in a system of reference (SR), which rotates at angular
speed ω = u/R around the center of the cylinder. In that
SR the part of the thread in contact with the cylinder is
at rest and the point Q rotates around the cylinder with
the angular velocity ωQ = −ω (see the figure).

Since the middle part of the thread is at rest, energy
of the mass P is conserved. For the same reason, the ve-
locity vP of P is perpendicular to the thread. Therefore
the kinetic energy acquired by the mass in the rotating
frame is equal to the decrease of its centrifugal potential
energy:

1

2
mv2P = −1

2
mω2R2 +

1

2
mω2r2 =

1

2
mω2l2P

where lP is the length of the unwound part of the thread
on the side of the mass P (see the figure). Therefore,
themass P rotates around the fixture point of the thread
with a velocity:

vP =
u

R
lP

and a constant angular velocity:

ωP =
u

R
= ω.

Since ωP = −ωQ, in the rotating SR the two ends of the
thread will unwind symmetrically and the lengths of the
two straight parts of the string will be equal at any mo-
ment of time. Therefore, at the moment of detachment:

lP =
1

2
(2πRN) = πNR

and the detachment velocity of P is, respectively:

vP = πNRu

When transforming the velocity of P to the Earth’s SR,
the velocity v⃗P should be added to the rotational veloc-
ity ω⃗ × r⃗. It is easy to establish that the result for the
transverse component of P is:

v⊥ = 2vP = 2πNu

Part 2: Thread detached from the cylinder. In that part
we proceed exactly as in Part 2 of the first solution.

Solution III. Part 1: The thread in contact with the
cylinder
Like in Solution I we decompose the velocity into lon-
gitudinal and transverse components, and come to the
conclusion that the longitudinal component is vl =
−u. Afterwards, the acceleration of P is expressed. In
this case, however, we consider the longitudinal (cen-
tripetal) component of the acceleration:

al = −v2⊥/l ≡ −v⊥
dϕ

dt

From the second Newton’s law we obtain the tension F
of the thread:

F = −mv⊥
dϕ

dt

The rate of change of the kinetic energy of the mass is
equal to the power of the tension force:

dEk

dt
= Fvl = +mv⊥

dϕ

dt
u

Taking into account that:

Ek =
1

2
m(u2 + v2⊥)

and taking the first derivative from that expression, we
obtain: mv⊥dv⊥/dt = mv⊥dϕ/dtu, or:

dv⊥
dt

= u
dϕ

dt

From that point on we proceed exactly as in the first so-
lution.

Grading scheme: T2 part 1, Solution I
The longitudinal component is −u 2.0 p
Relation between dϕ (or ω) and the
transversal velocity

1.0 p

Transversal acceleration 2.0 p
Differential equation for dv/dϕ 2.0 p
Final v⊥ 1.0 p
Total for part 1: 8.0 p

Grading scheme: T2 part 1, Solution II
Introduction of rotational SR where
wound string is at rest

1.0 p

Showing that the energy of P is conserved 1.0 p
Conservation of energy equation 2.0 p
Finding length lP at themoment of release 1.0 p
Finding vP at the moment of release 1.0 p
Final v⊥ in Earth SR 2.0 p
Total for part 1: 8.0 p

Grading scheme: T2 part 2, both solutions
Position in which maximum speed is
achieved

1.0 p

Value of vmax 1.0 p
Total for part 2 2.0 p
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T3: Cat eyes

When you look at the photo of the lens and/or the graph
provided, four regions with different brightness levels
can be distinguished. The brightest region represents
the magnified image of the blur ring created by the lamp
through the lens. The blur ring is created because the
distance from the lens to the white sheet beneath it is
slightly larger than the focal distance; aswe can see from
the graph, the blur ring is of almost constant brightness
(a flat plateau at log10 I = 4.4), so we can say that the
entire luminous flux falling from the lamp onto the lens
is distributed evenly over the blur ring. Note that the
blur ring has no sharp edges, though, as you would ex-
pect from in such case. This is because the image of this
bright disc is situated between the lens and the camera,
and is at a fairly big distance away from the plane which
is sharp at the image sensor (as seen from the photo,
the camera is focused onto the lens). Because of that,
the enlarged image of the blur ring has blurred edges in
the photo (at the blurred edges, log10 I varies from 3.4 to
4.4). The second-brightest region (with log10 I = 3.4) rep-
resents the scattered light from the brightest region: in
that region, we are still looking through the lens, and see
the area next to the bright blur ring on the sheet. Ideally,
its should be darker than the sheet seen in those places
where it is not obstructed by the lens, because the lens
is shading the light from the lamp. However, the glass
elements of this big lens are non-ideal (and there are
many glass elements inside the lens!), so the light from
the lamp and the bright blur ring is scattered towards
the camera giving rise to an increased apparent bright-
ness. In the area where we see the blur ring, this light is
insignificant (much weaker than the light from the blur
ring), but not so in this dark area. The darkest regions
(with log10 I < 1.75) represent the interior black paint-
ing of the lens seen through the big front glass element
of the lens, which absorbs most of the incident light, and
the region with x > 400 and log10 I = 1.95 represents the
white sheet illuminated by the lamp. The ratio between
the measured light intensity of the brightest region and
that of the region with x > 400 can be utilized to find the
distance of the sheet (the blur ring) from the lens to the
paper sheet d0, see below.

From the data given in the problem textwe know that
L ≫ f ; from the photo of the lens, it is also clear that d0
is of the same order of magnitude as f . Because of that,
the illuminance E (luminous flux per unit area) near the
lens can be assumed to be the same as at the paper sheet,
The luminous fluxper solid angle andunit area of a light-
scattering (or radiating) surface is called the luminance
L ; since all these directions under which the scattered
light enters the lens aperture are close to the surface nor-
mal, we may assume the luminance of the paper sheet
to be constant over all these directions. With the small
angle approximation, the light intensity I (illuminance,
luminous flux Φ per unit area) at the camera sensor is
proportional to L (see Explanation 1).

The luminance of the blur ring on the sheetLBR is 1/k
larger than the luminance Ls of the paper sheet, where
k equals the ratio between the area of the bright dot (the
blur ring) on the paper sheet and the area of the lens, be-

cause all the light received by the lens is “compressed”
into the tiny blur ring.

Small angle approximation is also used to show that
luminance of the image of the blur ring LI equals to
the luminance of the blur ring LBR (see Explanation
2). Therefore, the light intensity at the sensor cells corre-
sponding to the brightest area (where we see the image
of the blur ring) II = Is/k, where Is stands for the in-
tensity at the cells corresponding to unobscured paper
sheet. So, from the graph, we can deduce the value of
k, and knowing k we can calculate d0. Let the distance
along the axis between the image of the bright region
through the lens and the lens itself be denoted as dS ; ac-
cording to the Newton’s lens formula, (dS − f)(d0 − f) =
f2. Hence,

dS = f +
f2

d0 − f
=

d0f

(d0 − f)

can be also determined.
Hypothesize that d0 − f ≪ f . Let us calculate the di-

ameter of the image of the blur ring

DI =
DBRdS

d0
=

DBRf

d0 − f
,

where the diameter of the blur ring on the sheet

DBR =
D(d0 − f − s)

f + s
≈ D(d0 − f − s)

f
,

and s denotes the distance of the image of the point
source from the focal plane. Using Newton’s lens for-
mula, s = f2/(L − f) ≈ f2/L, hence f + s = Lf/(L − f).
This leads us to

DBR ≈ D

f

(
d0 −

Lf

L− f

)
and therefore

DI ≈ D

d0 − f

(
d0 −

Lf

L− f

)
≈ D

[
1− f2

L(d0 − f)

]
.

Keeping in mind that d0 − f = d0f
dS

≈ f2

dS
, we obtain

DI ≈ D

(
1− dS

L

)
=

D(L− dS)

L
.

This means that as seen from the position of the cam-
era, the angular size of the image of the blur ring θBR =
DI/(L − dS) equals to the angular size of the lens aper-
ture θL = D/L. This fact is easily confirmed from the
photo and allows us to measure instead of the angular
distance θ between the centre of the lens and the centre
of the image of the blur ring (as seen from the position
of the cameraline), the respective distance between the
edges of the respective circles.

Given the images are approximately circular, the
area ratio k equals (DBR/D)2, or

±
√
k =

1

f

(
d0 −

Lf

L− f

)
=

d0
f

− L

L− f
.

In the above equation, the ± sign represents the two
cases where the paper sheet is behind or in front of the
image of the lamp. From the graph, the ratio between the
intensity of the brightest region and the dark regionwith
x > 400 is 104.4−1.95 ≈ 282, which equals 1/k. Then, d0/f
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can be found to be±
√
k+1+ f

L , which gives two solutions
d0/f ≈ 1.07 and d0/f ≈ 0.95. According to the experimen-
tal settings given in the problem text, d0 is greater than f ,
and thus we obtain d0/f ≈ 1.07 and dS ≈ 15.03f ≈ 83 cm.
This also verifies the hypothesis that d0 − f ≪ f .

The centre of the image of the blur ring is positioned
at the height h′ = hdS

L above the direction to the centre
of the lens (cf. figure) which means that θ = h′/(L− dS);
meanwhile, the angular diameter of the lens θL = D/L.
Therefore,

θ

θL
=

hdS
D(L− dS)

.

The ratio of the angular distances is easily measured
from the figure as the ratio of the width dcr of the
crescent-shaped second-brightest region to the diameter
of the lense’s aperture D′:

h =
dcr
D′

D(L− dS)

dS
.

Based on the graph, dcr ≈ 90 pixels (midpoint of the
blurry edge is around x ≈ 120px, and the left edge of
the aperture (in the graph) is at x ≈ 30px; the right edge
of the lens aperture is at x ≈ 240px corresponding to
D′ = 210px and yielding h ≈ 80mm.

Remark 1. In order to obtain the final answer with a
reasonably good accuracy, it is not strictly speaking nec-
essary to show that the apparent angular diameters of
the lens and of the image of the blur ring are equal. All
the other calculations remain the same, just one needs
to match a circle with the circular segment of the visi-
ble edge of the blur ring, and measure directly h′, the
distance between the centre of the lens and the centre
of the blur ring, together with the diameter of the lens
aperture D′ (see the small figure).

Remark 2. The width of the crescent-shaped second-
brightest area can be also measured from the photo of
the lens with the required accuracy; however, measur-
ing in pixels from the graph is more accurate.

Explanation 1: Consider a small light source of lu-
minance L and surface area S at a large distance ↕ from

the camera. The illuminance (the luminous flux per unit
area) at the position of the camera is proportional to ↕−2

and so is the total luminous flux received by the whole
sensor. Meanwhile, all this light energy is focused onto a
small area S′ on the sensor — onto the image of the light
source, and this area is also proportional to ↕−2. There-
fore, the illuminance I at the position of those sensor pix-
els which are covered by the image is independent of the
distance ↕.

Explanation 2: Consider a very narrow cone of light
of solid angle ω, starting from a very small area S at
the blur ring in a direction close to the surface normal,
and carrying a total luminous flux Φ. Since the cone is
narrow, this light beam is entirely caught by the lens at
distance d0, and focused onto the image of surface area
S′ = S(dS/d0)

2 at distance dS from the lens. The light rays
of this beam traverse the focus and form another light
cone of solid angle ω′ departing from the image. It is easy
to see from similar triangles that ω/ω′ = (dS/d0)

2. Then,
the luminance of the image LI = Φ/(S′ω′) = Φ/(Sω), i.e.
equal to the luminance of the blur ring.
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Grading scheme: T3
Understanding that the brightest area is the image of the blur ring (explicitly stated or shown in a
diagram or implicitly assumed in a correct full solution). No partial credits.

3.0 p

Finding the ratio 1/k of the intensities at the brightest area and at the unobscured paper sheet (or
its reciprocal or its logarithm) from the graph. Subtract 0.2p if the mistake in taking the reading for
log10(I1/I2) is more than 0.05 but less than 0.1 and subtract 0.5p if the mistake is bigger than 0.1.

1.0 p

Expressing k correctly in terms of the ratio of the distances (either d0/f or dS/f or anything equiva-
lent). Partial score of 1.5 p if initial expressions are correct, but final expression a ratio of distances
is not obtained; subtract 0.2 p if f/L is neglected as compared to

√
k (either in the initial set-up or

during simplifications).

2.0 p

Relating correctly ratio of distancesmeasurable either on the graphor on the photo to h. Partial score
of 1.5 p if initial expressions are correct, but final expression a ratio of distances is not obtained or
are incorrect. Partial score of 1.0 p if initial expressions are not correct, but a diagram is drawn
which shows the measurable-from-the-figures distances, together with other related distances, in a
correct way.

2.0 p

Measuring these distanceswith a reasonable accuracy (only if the previous subscore is not 0). Partial
score of 0.5 p if a relative mistake made in the range of 20% to 30%, and 0.8 p if in the range of 10%
to 20%

1.0 p

Obtaining final answer with a reasonable accuracy. Partial score of 0.5 p if final formula is derived
but not calculated numerically. Subtract 0.5 p if calculation mistake is made and subtract 0.2 p for
rounding the result more than by 10%

1.0 p


