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A 43. Nemzetközi Fizikai Diákolimpia

feladatainak megoldása∗

Elméleti feladatok

1. feladat. Ragadd meg a lényeget!

A rész. Haj́ıtás. i. Ha a golyót függőlegesen felfelé dobjuk, akkor – a me-

chanikai energia megmaradása alapján – eléri az x = 0, z =
v2
0

2g
pontot. Ezt össze-

hasonĺıtva a z 6 z0 − kx2 egyenlőtlenséggel

z0 =
v20
2g

adódik. A k állandó meghatározásához vizsgáljuk a z → −∞ határesetet! Ebben
a határesetben a golyó akkor jut (adott z érték esetén) v́ızszintes irányban a leg-
messzebbre, ha a parabolapálya a leglaposabb, azaz ha a golyót v́ızszintesen haj́ıt-
juk el. Ekkor

z = −
g

2v20
x2.

Ezt béırva a megadott, most x → ∞ határesetben vizsgált egyenlőtlenségbe

−
g

2v20
x2

6 z0 − kx2,

azaz

k −
g

2v20
6

z0
x2

→ 0.

Innen k 6
g

2v2
0

. Ha k <
g

2v2
0

teljesülne, akkor (nagy x-re) a golyó által elérhető

tartomány és a megadott egyenlőtlenség által meghatározott tartomány között egy

”
rés” lenne, ezt a lehetőséget tehát kizárhatjuk. Eszerint a kérdezett paraméter:

k =
g

2v20
.

∗Az elméleti feladatok szövegét a múlt havi számunkban közöltük.
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ii. A golyó pályája megford́ıtható, ı́gy az
eredeti kérdés helyett vizsgálhatjuk ezt is: leg-
alább mekkora sebességgel kell az épület te-
tejéről eldobni a golyót, hogy valahol földet
érjen (anélkül, hogy az épületnek ütközne).
Könnyen belátható, hogy a golyó pályája vagy
az 1. ábrán látható, az épületet érintő para-
bola, vagy pedig egy olyan v́ızszintes haj́ıtás,
ahol a parabola görbülete a csúcspontjában
megegyezik a gömb sugarával. (Ha a golyó se-
hol nem érinti a parabolát, akkor csökkenthető
a sebessége, egész addig, amı́g valahol érinteni
fogja.)

1. ábra

Vizsgáljuk meg a v́ızszintes haj́ıtást! Ha változatlan sebességgel, de a v́ızszin-
teshez képest kis szöggel felfelé dobnánk a golyót, akkor sehol sem érintené az épü-
letet – ı́gy viszont kezdeti sebessége csökkenthető lenne! Ebből következik, hogy
a v́ızszintes haj́ıtás nem lehet ideális, ı́gy a helyes megoldás az 1. ábrán látható
pálya.

iii. Vegyük észre, hogy az egész épületnek benne kell lenni abban a tartomány-
ban, amit az épület tetejéről induló, minimális sebességű haj́ıtásokkal el tudnánk
találni. (Hiszen ha az optimálishoz képest csökkentjük az eldobás v́ızszintessel be-
zárt szögét, akkor a golyó nem érinti, hanem eltalálja az épületet.) Ugyanakkor
a dobással elérhető tartomány határának érinteni kell az épületet. (Ellenkező eset-
ben az optimális sebességgel lehetne úgy haj́ıtani, hogy az nem érinti az épületet.)

Tehát a minimális sebességgel eldobott golyóval elérhető tartomány határa és
az épület felsźıne érinti egymást (a szimmetria miatt két pontban). Ha a minimális
ind́ıtási sebesség a gömb tetejéről v0, akkor a következő egyenletrendszert kapjuk:

x2 + z2 + 2zR = 0, z =
v20
2g

−
gx2

2v20
.

z kiküszöbölésével x2-re a következő másodfokú egyenlet adódik:
(

g

2v20

)2

x4 +

(

1

2
−

gR

v20

)

x2 +

(

v20
4g

+R

)

v20
g

= 0.

A két görbe akkor érinti egymást, amikor az egyenlet diszkriminánsa éppen 0. Ebből
(

1

2
−

gR

v20

)2

=
1

4
+

gR

v20
, azaz v20 =

gR

2
.

A mechanikai energia megmaradása alapján a keresett minimális ind́ıtási sebesség

vmin =
√

v20 + 4gR = 3

√

gR

2
.

B rész. Légáramlás a szárny körül. i. A szárnyhoz rögźıtett vonatkozta-
tási rendszerben a kontinuitási törvény miatt két áramvonal között (egy áramlási
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vonal mentén) állandó a levegő térfogatárama (az időegységenként átáramló levegő
mennyisége). A térfogatáram a sebesség és a keresztmetszet szorzata. A keresztmet-
szet viszont esetünkben – a kétdimenziós geometria miatt – arányos az áramvonalak
távolságával, ami a 2. ábráról leolvasható. Mivel nincsen szél, a nyugalomban lévő

levegő sebessége a szárnyhoz viszo-
nýıtva éppen v0. Az ábrán megmérve
a = 10 egység és b = 13 egység. Ez alap-
ján a levegő sebessége a P pontban
a szárnyhoz képest u = v0

a
b
, a földhöz

képest pedig

vP = v0 − u = v0

(

1−
a

b

)

= 23
m

s
. 2. ábra

ii. Bár az 1
2
ρv2 dinamikus nyomás aránylag kicsi, változása bizonyos mér-

tékű adiabatikus összenyomódást vagy kitágulást eredményez. Ott, ahol a levegő
kitágul, a hőmérséklete lecsökken, és ha a hőmérséklet eléri a harmatpontot, ak-
kor a v́ızgőz kicsapódik, apró v́ızcseppek jelennek meg. A kicsapódás ott kezdődik
meg, ahol a kitágulás maximális, azaz ahol a levegő (statikus) nyomása minimális.

A Bernoulli-törvény szerint p+ 1
2
̺v2 = állandó, ı́gy p ott lesz a legkisebb, ahol v

(a levegő szárnyhoz viszonýıtott sebessége) a legnagyobb, azaz ahol az áramvonalak
a legközelebb vannak egymáshoz. Ez a 2. ábrán Q-val jelölt pont.

iii. Először meg kell határoznunk a harmatpontot. A v́ızgőz nyomása pw =
= psar = 2, 08 kPa. A kis változások miatt a gőznyomás hőmérséklet-függését te-
kinthetjük közeĺıtőleg lineárisnak:

psa − pw
Ta − T

=
psa − psb
Ta − Tb

,

amiből T ≈ 291,5 K adódik.

Ezután meg kell határozni a levegő sebessége és hőmérséklete közti kapcsolatot.
A Bernoulli-törvényhez hasonlóan egy energiamérleget ı́rhatunk fel, de figyelembe
kell vennünk a levegő összenyomásával/kitágulásával kapcsolatos munkát is. Mivel
a levegő rossz hővezető, és az áramlás során gyorsak a változások, a folyamat
adiabatikus. Egy áramlási cső (például két közeli áramvonal közötti térrész) két
pontjára (1 és 2) feĺırva a munkatételt egy mol levegőre az

1

2
Mv21 + cV MT1 + p1V1 =

1

2
Mv22 + cV MT2 + p2V2

összefüggést kapjuk, ahol M a levegő moláris tömege, cV pedig az állandó térfoga-
ton mért fajhő. (Az első tag a gáz mozgási energiája, a második a belső energiája,
a harmadik pedig a gáz benyomásakor végzett munka.) Felhasználva, hogy egy mol

gázra pV = RT , és cV M +R = cpM , azt kapjuk, hogy 1
2
v2 + cpT = állandó. Ebből

cp∆T = −∆
v2

2
=

1

2
v2krit.

(

1−
a2

c2

)

,
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ahol c az áramvonalak távolsága a Q pontban. Felhasználva, hogy c ≈ 4,5 egység
és ∆T = −1,5 K,

vkrit. = c

√

2cp∆T

c2 − a2
≈ 23

m

s
.

Megjegyzés: A valóságban ennél valamivel nagyobb sebesség szükséges, mert a levegő
hirtelen kicsapódása csak jelentős túlteĺıtés hatására indul meg.

3. ábra

C rész. Mágneses csövek. i. A cső szupravezető fa-
lán nem mehetnek át indukcióvonalak, ı́gy a csőben állandó
a fluxus. A cső belsejében örvénymentes a tér, a két feltételből
együtt pedig adódik, hogy homogén is, azaz az indukcióvona-
lak párhuzamosak, és egyenlő távolságra vannak egymástól.

Megjegyzés: A csövön ḱıvül a tér hasonĺıt a vékony, hosszú

tekercs (szolenoid) mágneses teréhez, azzal a fontos különbséggel,

hogy a szolinoid végeinek közelében a tekercs oldalán is lépnek ki

indukcióvonalak, a szupravezető csőnél ez nem lehetséges. A másik

különbség: a szolenoid árama (egyenletes tekercselés esetén) hossz-

egységenként mindenhol ugyanakkora, a szupravezető cső falában

folyó áram pedig a végek közelében nem egyenletes.

A szupravezető cső indukcióvonalait vázlatosan a 3. ábra
mutatja.

ii. Nyújtsuk meg gondolatban egy kicsiny ∆ℓ értékkel a csövet, és vizsgáljuk
meg, hogy ehhez mennyi munkára van szükség! A cső fluxusa nem változhat (mert
a fluxusváltozás a szupravezetőben végtelen nagy áramokat indukálna), ı́gy a mág-

neses indukció is állandó: B = Φ
πr2

. A mágneses tér energiasűrűsége 1
2µ0

B2, amiből

a cső megnyújtásához szükséges munka

∆W =
1

2µ0

B2∆V =
1

2µ0

Φ2

π2r4
πr2∆ℓ =

Φ2

2µ0πr2
∆ℓ.

Ezt a munkát a húzóerő végzi: ∆W = T∆ℓ, amiből a keresett erő

T =
Φ2

2µ0πr2
.

iii. A csövek között fellépő erő iránya – az elrendezés szimmetriája miatt –
nyilván merőleges a csövek tengelyére. Az erő nagyságát egy elektrosztatikus ana-
lógia alapján fogjuk meghatározni. Vizsgáljuk meg, hogyan változik a rendszer
mágneses energiája, ha az egyik csövet egy kicsit elmozd́ıtjuk, eltávoĺıtjuk a má-
siktól! A csövek belsejében semmi se változik, mert a csövek fluxusa állandó, csak
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a külső tér változik. A csöveken ḱıvül a mágneses indukció örvénymentes (mert
nincsenek áramok), a csövek végpontjai ±Φ erősségű források, ezeken ḱıvül viszont
mindenhol forrásmentes a tér. Ezek a csöveken ḱıvül pontosan olyan feltételek, mint
amilyenek négy ±Q nagyságú elektromos töltés elektromos terét jellemzik. (A csö-
veken belül természetesen különböző a két tér, és a csövek falai is az elektromos
esettől különböző határfelületet jelentenek, de három dimenzióban a vékony csö-
vek elhanyagolható módon torźıtják a csöveken ḱıvüli teret.) Ezek szerint a csövek
végpontjait úgy tekinthetjük, mintha mágneses ponttöltések lennének.

Keressük meg az elektromos és a mágneses jelenségek közötti megfelelte-
tést! Két Q nagyságú, egymástól a távolságra elhelyezett elektromos töltés között

F = 1
4πε0

Q2

a2
erő hat. Az egyik töltés terének energiasűrűsége a másik töltés helyén

w = ε0
2
E2 = 1

32π2ε0

Q2

a4
.

Ezek szerint az erőt ı́rhatjuk F = 8πwa2 alakban is. Ez a kifejezés bármely esetben
használható két ellentétes előjelű, azonos nagyságú ponttöltés között fellépő erő
meghatározására, ı́gy használhatjuk a mágneses ponttöltésekre is.

A Gauss-törvény alapján egy Φ fluxusú mágneses ponttöltés által a távolságra

létrehozott indukció B = Φ
4πa2

. Az energiasűrűség a ponttöltéstől a távolságra

w =
1

2µ0

B2 =
1

32π2µ0

Φ2

a4
,

amiből az a távolságra lévő Φ fluxusú mágneses ponttöltések között fellépő erő

F = 8πwa2 =
1

4πµ0

Φ2

a2
.

A négy ponttöltés közül az ellentétesek vonzzák egymást, a köztük fellépő

erő F1 = 1
4πµ0

Φ2

ℓ2
. Az átlósan elhelyezkedő azonos előjelű töltések közti tasźıtóerő

normális komponense

F2 =

√
2

2

1

4πµ0

Φ2

2ℓ2
.

Az eredő vonzó erő ezek alapján

F = 2 (F1 − F2) =
4−

√
2

8πµ0

Φ2

ℓ2
.

2. feladat. Kelvin csepegtetős gépe

A rész. Egyetlen cső i. A feladat szövege szerint a v́ız lassan csöpög ki
a csőből: ez időben állandósult v́ızhozamra utal, ezért a csőben lévő v́ızoszlopra
ható erők eredője (a cső falánál és a folyadékban fellépő belső súrlódás miatt) zé-
rus. A v́ızcseppben uralkodó nyomás a külső légnyomásnál a felületi feszültség miatt
∆p = 2σ/r értékkel nagyobb (itt r a v́ızcsepp sugara). A cső végén függő, lassan

Középiskolai Matematikai és Fizikai Lapok, 2012/8 453
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h́ızó v́ızcseppre a következő négy erő hat: függőlegesen lefelé a 4
3
πr3ρg nehézségi

erő, a cső szája és a v́ız érintkezési vonalán a felületi feszültségből származó 2πrσ
nagyságú, felfelé mutató erő, a p0 külső légnyomásból származó (felfelé irányuló) erő
és a v́ızcsepp csőhöz csatlakozó részén egy kis d átmérőjű körlapon ható p0 +∆p
nyomásból származó, lefelé mutató erő. Könnyen belátható, hogy utóbbi két erő
eredője π

4
d2∆p, ezt a d-ben másodrendűen kicsiny hatást d ≪ r miatt elhanyagol-

hatjuk.

Közvetlenül a leválás előtt a v́ızcsepp jelentősen deformálódik: a csepp felső ré-
sze és a cső között kicsiny, d átmérőjű, hengeres nyak képződik. Ebben a pillanatban
a
”
nyak” által függőlegesen felfelé kifejtett πdσ kapilláris erő éppen ellensúlyozza

a v́ızcsepp súlyát, azaz

πdσ =
4

3
πr3maxρg,

innen a csepp maximális sugara:

rmax = 3

√

3σd

4ρg
.

ii. A v́ızcsepp töltéseloszlása (d ≪ r miatt) jó közeĺıtéssel egyenletes, ı́gy
a csepp ϕ potenciálja egy Q töltésű gömb potenciáljaként számolható:

ϕ =
1

4πε0

Q

r
,

ebből Q = 4πε0ϕr.

iii. A feltöltött gömbön ḱıvül, annak felületének közelében E = 1
4πε0

Q

r2
nagy-

ságú térerősség uralkodik, a gömbön belül pedig zérus az elektromos térerősség.
A gömb felületén lévő, ∆A felsźınű kicsiny darabka töltése az egyenletes töltésel-

oszlás miatt ∆Q = ∆A
4πr2

Q, a rá ható erő pedig

∆F =
1

2
E∆Q =

Q2

32π2ε0r4
∆A =

ε0ϕ
2

2r2
∆A.

(Az 1
2
-es szorzótényező – kissé pongyolán fogalmazva – onnan származik, hogy

a térerősség csak a darabka külső oldalán E, a belső oldalon zérus, ı́gy átlagosan
E/2 a darabka helyén a térerősség. Ugyanez a faktor jelenik meg egy śıkkondenzátor
lemezei között ható erő kifejezésében is.)

A v́ızcseppet a felületi feszültség igyekszik összehúzni, a felületén lévő, egymást
tasźıtó töltések pedig igyekeznek kitáǵıtani. Az elektromos tasźıtásból származó erő
∆F
∆A

értékkel csökkenti a csepp belsejében uralkodó nyomást. A csepp akkor szakad
szét, ha ez a

”
negat́ıv” nyomás éppen megegyezik a görbületi nyomással:

ε0ϕ
2
max

2r2
=

2σ

r
,

ebből a maximálisan alkalmazható potenciál ϕmax = 2
√

σr/ε0.
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B rész. Két cső. i. Bár a cseppek potenciálja a földelés miatt nulla, a kör-
nyező, hengeres elektródák hatása miatt mégis feltöltődnek. Vizsgáljuk meg a po-
tenciál változását következő, a bal oldali csepptől a jobb oldali cseppig vezető útvo-
nalon: a bal oldali csepptől a bal oldali hengeres elektródáig U a potenciálkülönbség,
a bal oldali és a jobb oldali elektróda között q/C a feszültség (hiszen a kondenzá-
toron át kell haladnunk), végül a jobb oldali elektróda és a jobb oldali csepp között

(a szimmetria miatt és a töltések előjele miatt) ismét U a feszültség. Útvonalunk
kezdő- és végpontja egyaránt zérus potenciálú, tehát a feszültségek összegének is
nullának kell lennie:

U + q/C + U = 0,

azaz az azonos oldalon elhelyezkedő hengeres elektróda és csepp között U =
= ±q/(2C) a feszültség (az előjel attól függ, hogy a jobb vagy bal oldalt vizsgáljuk).
Az A/ii. rész eredményét felhasználva, a ϕ = q/(2C) és r = rmax helyetteśıtéssel
megkapjuk az éppen leeső cseppek töltését:

Q = 2πε0qrmax/C.

ii. Az egységnyi idő alatt lecseppenő cseppek száma n, ı́gy a hengeres elekt-
ródák (vagyis a kondenzátor) töltése dt idő alatt dq = Qndt értékkel növekszik.
Az előző alkérdés eredményét felhasználva ez tovább alaḱıtható:

dq

dt
=

2πε0rmaxn

C
q,

ami egy előjeltől eltekintve a radioakt́ıv bomlás differenciálegyenletére hasonĺıt.
A jobb oldalon eltérő előjel azt eredményezi, hogy a kondenzátor töltése a ra-
dioakt́ıv atommagok számával ellentétben nem exponenciálisan csökken, hanem
exponenciálian növekszik az idővel:

q(t) = q0e
γt, ahol γ =

2πε0rmaxn

C
=

πε0n

C
3

√

6σd

ρg
.

iii. A leeső cseppek akkor érhetik el az alattuk elhelyezkedő edényeket, ha az
mgH gravitációs helyzeti energiájuk elég nagy az elektrosztatikus tasźıtás legyőzé-
séhez. Közvetlenül a leszakadás után a Q töltésű csepp a hengeres elektróda által
létrehozott q/(2C) potenciált érzi, amikor pedig az alatta lévő, v́ızzel telt edénybe
érkezik, −q/(2C) potenciálú helyre kerül. Az edény elérésének feltétele tehát:

q

C
Q 6 mgH, ahol Q =

2πε0qrmax

C
.

Ebből a kondenzátor UC = q/C feszültségének legnagyobb értéke:

Umax
C =

√

mgH

2πε0rmax

.

Az A/i. rész eredményét felhasználva a végeredmény:

Umax
C = 6

√

σ2d2H3ρg

6ε0
.
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3. feladat. Csillagkezdemény kialakulása

i. A kezdeti szakaszban a hőmérséklet nem változik. Így a Boyle–Mariotte-
törvény alapján:

p1
p0

=
V0

V1

=

(

r0
r1

)3

= 8.

ii. A folyamat kezdetén a gáz nyomásából származó erők elhanyagolhatók
a gravitációs erőhöz képest. Tekintsünk egy kicsiny gáztérfogatot a gázfelhő szélén.
Ismert, hogy egy gömbszimmetrikus tömegeloszlás gravitációs tere a gömbön ḱıvül
(és annak felületén) megegyezik a gömb középpontjába helyezet (azonos tömegű)

tömegpont gravitációs terével. Így a gáztérfogatunk kezdeti gyorsulása g ≈ Gm/r20.
Mivel a gravitációs erő nem változik lényegesen, a gyorsulást közeĺıthetjük ezzel az
állandó értékkel. Ebben a közeĺıtésben egyenletesen gyorsuló mozgásról beszélhe-
tünk. A négyzetes úttörvényből az idő könnyen kifejezhető:

t2 ≈

√

2(r0 − r2)

g
=

√

2r20(r0 − r2)

Gm
=

√

0,1 r30
Gm

.

Megjegyzés. Érdemes észrevenni, hogy ez az idő csak a gázfelhő sűrűségétől függ.
Ez azt jelenti, hogy a gázfelhő belsejében kiszemelt kicsiny gáztérfogatra is igaz, hogy t2
idő alatt csökken a középponttól mért távolsága 5%-kal. Hasonló okoskodással belátható,
hogy ez a későbbi (nem nulla kezdősebességű) mozgásszakaszokra is érvényes, és emiatt
a kezdetben homogén anyageloszlású gázfelhő mindaddig homogén marad, amı́g a gáz
nyomása elhanyagolható.

iii. Továbbra is feltételezzük, hogy a kicsiny gáztérfogatunk mozgásában a gra-
vitáció ḱıvüli hatásokat elhanyagolhatjuk. A feladat szövege azt sugallja, hogy az
esési pályát egy elfajult ellipszispályának tekintsük, melynek fél nagytengelye r0/2
(lásd a 4. ábrát).

4. ábra

Kepler III. törvényéből következik, hogy a pálya periódusideje megegyezik egy
r0/2 sugarú körpálya T periódusidejével, amit az egyenletes körmozgás mozgás-
egyenletéből könnyen ki lehet számı́tani:

(

2π

T

)2
r0
2

=
Gm

(r0/2)
2
, ahonnan T = 2π

√

r30
8Gm

.
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A feladat szövegéből kitűnik, hogy a végső sugár sokkal kisebb, mint a kezdeti,
ezért az összeomlás idejét közeĺıthetjük a kiszámolt periódusidő felével:

t =
T

2
= π

√

r30
8Gm

.

Megjegyzés. A gázfelhő gravitációs összeroskadásának idejét úgy is megkaphatjuk,
hogy az energiamegmaradás törvényét használva kiszámı́tjuk a sebesség helyfüggését:

v2

2
−

Gm

r
= E

(

= −
Gm

r0

)

,

ahonnan

−
dr

dt
= v(r) =

√

2E +
2Gm

r
,

majd a sebesség reciprokát integráljuk a teljes pályára:

t =

∫

r0

0

dr
√

2E +
2Gm
r

.

Az integrál (melynek kiszámı́tása a verseny korlátozott ideje alatt nyilván nem várható el)
ugyanazt az eredményt adja, mint a Kepler-törvényekre hivatkozó megoldás.

iv. Mivel a gáz hőmérséklete nem változik, azért a gáz által kisugárzott hő
a gázon végzett munkával egyenlő. A gáz izoterm állapotváltozása során a végzett
munka:

W = −
∫ V3

V0

p(V ) dV,

ahol a nyomás a pV = m
µ
RT0 gáztörvényből számolható. A kisugárzott hő eszerint

Q = W = −nRT0

∫ V3

V0

1

V
dV = RT0

m

µ
ln

V0

V3

= 3RT0

m

µ
ln

r0
r3

.

Megjegyzések. 1. A felhasznált munkaképlet arra az esetre vonatkozik, amikor a gáz
egyensúlyi állapotokon keresztül jut el egyik állapotból a másikba. Ez a jelen esetben nem

teljesül, de ennél jobb becslést nem lehet adni.

2. Sokan ott hibáztak, hogy a gravitációs energia teljes változásával tették egyenlővé
a kisugárzott hőt. Ez csak akkor lenne igaz, ha a nyomás a gravitációval azonos nagy-
ságú lenne, itt viszont elhanyagolható. A feladat szövegében megadott Gmµ/r0 ≫ RT0

egyenlőtlenséggel könnyű belátni, hogy a kisugárzott hő elhanyagolható a gravitációs ener-
giaváltozáshoz képest.

v. Az összeroskadás ebben a szakaszban adiabatikus. Az adiabatikus állapot-
változásra igaz, hogy pV γ = állandó. Ebből és a gáztörvényből következik, hogy
TV γ−1 = állandó. Ezt felhasználva:

T = T0

(

V3

V

)γ−1

= T0

(r3
r

)3γ−3

.
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vi. Az összeroskadás r3 → r4 szakaszában a gravitációs energia és a meglévő
mozgási energia alakul át a gáz belső energiájává. A mozgási energia megegyezik
az r0 → r3 szakaszon történő gravitációs energiaváltozás nagyságával. A gravitációs
energiaváltozást a következő formulával becsülhetjük:

∆Eg = −G
m2

r4
−
(

−G
m2

r0

)

≈ −G
m2

r4
.

(A pontosabb, integrálással meghatározható energiaváltozás ettől a becsléstől

egy 3
5
-ös szorzótényezőben különbözik.) A belső energia megváltozása:

∆Eb =
f

2
nRT4 −

f

2
nRT0 ≈

f

2
nRT4 ≈ RT4.

A fenti közeĺıtéseknél kihasználtuk, hogy r4 ≪ r0 és T4 ≫ T0; az f/2 tényező he-
lyébe pedig azért ı́rtunk 1-et, mert csupán nagyságrendi becslésre törekszünk;
az egységnyi nagyságú szorzótényezőket nem vesszük számı́tásba.)

A két energiaváltozás nagyságát egyenlővé téve – és a hőmérsékletet a felhő
sugarával kifejezve – kapjuk:

G
m2

r4
≈

m

µ
RT0

(

r3
r4

)3γ−3

.

Innen a keresett méret és hőmérséklet kifejezhető:

r4 ≈ r3

(

RT0r3
µmG

)
1

3γ−4

, T4 ≈ T0

(

RT0r3
µmG

)

3γ−3

4−3γ

.

Megjegyzések. 1. Az egyensúlyba került gázfelhő közepén kialakuló nyomást (köze-
ĺıtően, de nagyságrendileg helyesen) kétféleképpen is kiszámı́thatjuk: egyrészt a (̺ sűrű-
ségű) gáz hidrosztatikai nyomásaként:

p ≈ ̺r4 ·
Gm

r2
4

,

másrészt a gáztörvény felhasználásával:

p ≈
̺

µ
RT4.

A két kifejezés jobb oldalát egyenlővé téve (valamint T4 és r4 korábban kiszámı́tott
kapcsolatát is felhasználva) megkapjuk T4 és r4 fentebb levezetett kifejezéseit.

2. Sok versenyző (a magyar diákok közül is többen) a virtuális munka elvét használ-
ták. Eszerint egy test akkor van egyensúlyi helyzetben, ha egy kicsiny elképzelt (virtuális)
kitéŕıtés esetén a testen végzett munkák összege nulla. A jelen esetre alkalmazva ez azt je-
lenti, hogy kicsi sugárváltozás esetén a felszabaduló gravitációs energia éppen fedezi a gáz
belső energia növekedését. Az ı́gy számolt képletek egy konstans szorzózényezőben térnek
el a fenti eredményektől.

Az eltérés okát egy egyszerű mechanikai példával szemléltethetjük. Ha egy nyújtatlan
rugóra egy testet akasztunk, és feĺırjuk az energia-megmaradás törvényét, akkor a rezgő-
mozgás alsó és felső maximális kitérési helyét kapjuk meg, a virtuális munka elvével pedig
az egyensúlyi helyzetet találjuk meg.
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