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Bevezetés 
Ebben a feladatban egy hatékony, kísérletileg is működő gőzfejlesztési eljárást fogunk 
tanulmányozni. Víz és benne eloszlatott, nanométeres méretű, gömb alakú ezüstgolyócskák 
(literenként csak körülbelül 1013 darab) keverékét fókuszált fénynyalábbal világítjuk meg. A fény 
egy részét a nanogolyócskák elnyelik, így felmelegednek és közvetlen környezetükben gőzt 
keltenek anélkül, hogy a teljes vízmennyiséget felmelegítenék. A keletkező gőz buborékok 
formájában távozik a rendszerből. Jelenleg a folyamat még nem minden részletében tisztázott, de a 
felmelegedés jelensége a fémes nanogolyócskák elektronjainak együttes oszcillációján alapuló 
fényelnyeléssel magyarázható. A berendezést plazmonos gőzfejlesztőnek nevezzük. 
 
 

 
  

Figure 2.1 (a) Egy R sugarú, gömb alakú, semleges nanogolyócska a koordináta-rendszer origójában. (b) A 
Tömör gömb homogén, pozitív 𝜌 töltéssűrűséggel (piros), benne egy kisebb 𝑅1 sugarú, 𝒙d = 𝑥d 𝒆𝑥  vektorral 
eltolt középpontú, gömb alakú, töltéssemleges tartománnyal (0, sárga). (c) A koordináta-rendszer origójában 
rögzített nanogolyócska pozitív 𝜌 töltéssűrűségű ezüstionjai (piros), és az origóhoz képest 𝒙p vektorral eltolt 
középpontú (𝑥p ≪ 𝑅), gömb alakú, negatív –𝜌 töltéssűrűségű elektronfelhő (kék). (d) Külső homogén 
𝑬0 = −𝐸0𝒆𝑥 elektromos tér. Időfüggő 𝑬0 esetén az elektronfelhő 𝒗 = d𝒙p/d𝑡 sebességgel mozog. (e) A z-
irányba haladó, 𝜔p körfrekvenciájú,  𝑆 intenzitású, monokromatikus fénynyalábbal megvilágított téglatest 
alakú (ℎ× ℎ× 𝑎) tartály, benne a vízben eloszlatott nanogolyócskákkal. 
 
  
Egyetlen, gömb alakú, ezüst nanogolyócska 
Ebben a részfeladatban tekintsünk egy 𝑅 = 10,0 nm sugarú, gömb alakú ezüst nanogolyócskát, 
melynek középpontja a koordináta-rendszerünk origójában van rögzítve, ahogy az a 2.1(a) ábrán 
látható. Minden bekövetkező mozgás, erőhatás és erőtér párhuzamos a vízszintes 𝑥-tengellyel 
(amely az 𝒆𝑥 irányvektorral adható meg). A nanogolyócska vezetési elektronjai a golyócska teljes 
térfogatában szabadon mozoghatnak anélkül, hogy bármelyik ezüstatomhoz kötődnének. Az 
ezüstatomok pozitív ionokként vannak jelen a golyócskában, mindegyik egy-egy elektronnal járul 
hozzá a szabad töltéshordozókhoz. 
  

2.1 
Határozd meg a következő mennyiségeket: a nanogolyócska 𝑉 térfogata és 𝑀 tömege; a 
nanogolyócskában található ezüstionok 𝑁 száma és 𝜌 töltéssűrűsége; valamint a szabad 
elektronok 𝑛 számsűrűsége (koncentrációja), összes 𝑄 töltése és összes 𝑚0 tömege. 

0,7 
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Elektromos mező egy töltött gömbön belüli töltéssemleges tartományban 
Ebben a részfeladatban tegyük fel, hogy minden anyag relatív permittivitása 𝜀 = 1. Homogén 𝜌 
töltéssűrűségű, R sugarú gömb belsejében −𝜌 töltéssűrűség hozzáadásával egy kisebb, 𝑅1 sugarú, 
töltéssemleges tartományt hozunk létre, melynek középpontja az R sugarú gömb középpontjához 
képest 𝒙d = 𝑥d 𝒆𝑥  vektorral van tolva (lásd a 2.1(b) ábrát).  
 

2.2 Mutasd meg, hogy a töltéssemleges tartományban az elektromos tér homogén és 
𝑬 = 𝐴 (𝜌/𝜀0) 𝒙d alakú! Határozd meg az 𝐴 szorzótényező értékét! 1,2 

 
A kitérített elektronfelhőre ható visszatérítő erő 
A következőkben a szabad elektronok együttes mozgását vizsgáljuk. Ennek érdekében modellezzük 
a szabad elektronok összességét egyetlen, negatívan töltött, homogén −𝜌 töltéssűrűségű, 𝒙p 
középpontú gömbbel, amely az x-tengely mentén mozoghat az origóhoz rögzített középpontú, 
pozitív töltésű gömbhöz (ezüstionok) képest (lásd a 2.1(c) ábrát!). Tegyük fel, hogy egy külső 𝑭ext 
erő hatására az elektronfelhő 𝒙p = 𝑥p 𝒆𝑥 vektorral elmozdul eredeti helyzetéből, ahol |𝑥p| ≪ 𝑅. A 
nanogolyócska ―a két szélén megjelenő kicsiny töltéstől eltekintve― a belsejében töltéssemleges 
marad. 
  

2.3 𝒙p és 𝑛 felhasználásával fejezd ki a következő két mennyiséget:  az elektronfelhőre ható 
𝑭 visszatérítő erőt, valamint az elektronfelhő elmozdítása során végzett 𝑊el munkát. 

1,0 

 
 
Ezüst nanogolyócska időben állandó, külső elektromos térben 
Egy nanogolyócskát vákuumban 𝑬0 = −𝐸0𝒆𝑥 homogén elektromos térbe helyezünk, melynek 
hatására az elektronfelhő 𝑭ext erőhatást érezve kicsiny |𝑥p| távolsággal elmozdul, ahol |𝑥p| ≪ 𝑅. 
   

2.4 
Határozd meg az elektronfelhő 𝑥p elmozdulását 𝐸0 és 𝑛 felhasználásával! Határozd meg 
az elmozdulás közben a nanogolyócska közepén átmenő yz-síkon keresztülhaladó −Δ𝑄 
töltést 𝑅,𝑛 és 𝑥p függvényében! 

0,6 

 
 
Az ezüst nanogolyócska helyettesítő kapacitása és induktivitása  
Mind időben állandó, mind változó 𝑬0 elektromos térben a nanogolyócska modellezhető egy 
megfelelő elektromos áramkörrel. A helyettesítő képbeli kapacitás meghatározható, ha a Δ𝑄 töltés 
szétválasztásához szükséges 𝑊el munkát megfeleltetjük egy ±Δ𝑄 töltéssel ellátott kondenzátor 
energiájának. A töltésszétválasztás a helyettesítő képben 𝑉0 feszültséget eredményez a fegyverzetek 
között. 
 

2.5a Fejezd ki a rendszer helyettesítő képének C kapacitását 𝜀0 és 𝑅 felhasználásával, és 
számítsd ki numerikus értékét!  0,7 

2.5b 𝐸0 és 𝑅 felhasználásával fejezd ki azt a 𝑉0 feszültséget, amit a helyettesítő képbeli 
kondenzátorra kellene kapcsolni ahhoz, hogy Δ𝑄 töltése legyen! 0,4 
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Időfüggő 𝑬0 elektromos tér esetén az elektronfelhő mozgásba jön, sebességét jelölje 𝒗 = 𝑣 𝒆𝑥 (lásd 
a 2.1(d) ábrát!). Ennek következtében az elektronok 𝑊kin mozgási energiára tesznek szert és a 
rögzített yz-síkon átfolyó 𝐼 erősségű áramot okoznak. Az elektronfelhő mozgási energiája 
megfeleltethető egy 𝐼 árammal átjárt 𝐿 induktivitás energiájának.  
 
2.6a Fejezd ki a 𝑊kin és  𝐼 mennyiségeket 𝑣 felhasználásával! 0,7 

2.6b 
Fejezd ki a helyettesítő képbeli 𝐿 induktivitást a golyócska 𝑅 sugarának, az elektron 𝑒 
töltésének és 𝑚𝑒 tömegének, valamint az 𝑛 elektronszám-sűrűség felhasználásával, 
majd számítsd ki numerikus értékét! 

0,5 

  
 
Az ezüst nanogolyócska plazmon rezonanciája  
Az eddigiekből következik, hogy az egyensúlyi helyzetéből kitérített, majd elengedett elektronfelhő 
mozgása egy, a rezonanciafrekvenciával oszcilláló ideális LC-körrel modellezhető. Az 
elektronfelhő ilyen mozgását plazmon rezonanciának hívják, a rezgés 𝜔p körfrekvenciája pedig az 
úgynevezett plazmon körfrekvencia.  
  

2.7a 
Határozd meg az elektronfelhő 𝜔p plazmon körfrekvenciáját az elektron 𝑒 töltésének, 
𝑚𝑒 tömegének, az 𝑛 elektronszám-sűrűség és az 𝜀0 vákuum-permittivitás 
felhasználásával! 

0,5 

2.7b Számítsd ki 𝜔p-t rad/s egységekben, valamint az 𝜔 = 𝜔p körfrekvenciájú fény 𝜆p 
hullámhosszát nm egységekben! 0,4 

 
 

Plazmon frekvenciájú fénnyel megvilágított ezüst nanogolyócska 
A feladat további részében a nanogolyócskát 𝜔p plazmon körfrekvenciájú, 𝑆 = 1

2
𝑐𝜀0𝐸02 =

1.00 MW m−2 intenzitású, monokromatikus fénnyel világítjuk meg. Mivel a hullámhossz nagy 
(𝜆p ≫ 𝑅), tekinthetjük úgy, hogy a nanogolyócska homogén, időben harmonikusan változó 
𝑬0 = −𝐸0 cos(𝜔p𝑡) 𝒆𝑥 elektromos térben helyezkedik el. Az 𝑬0 tér hatására az elektronfelhő 𝒙p(𝑡) 
középpontja is ugyanazon frekvenciával, 𝒗 = d𝒙p/d𝑡 sebességgel, állandó  𝑥0 amplitúdóval rezegni 
kezd. Az elektronok eme rezgőmozgása a fény elnyeléséhez vezet. A nanogolyócska által befogott 
energia egy része a golyócska belsejében Joule-hővé alakul, a maradék része pedig szórt fény 
formájában újra kisugárzódik.   
     A Joule-hőt a szabad elektronoknak az ezüstionokkal való ritka, véletlenszerű, rugalmatlan 
ütközései okozzák. Az ütköző elektron a teljes mozgási energiáját elveszíti, ami az ezüstionok 
rezgéseivé (azaz hővé) alakul. Az ilyen ütközések közötti átlagos időtartam 𝜏 ≫ 1/𝜔p, ahol ezüst 
nanogolyóskára számoljunk a 𝜏 = 5.24 × 10−15 s értékkel!  
 

2.8a 

Fejezd ki a nanogolyócskában fejlődő Joule-hő keletkezési ütemének (teljesítményének) 
𝑃heat időátlagolt értékét és az áramerősség négyetének 〈𝐼2〉 időátlagát úgy, hogy a 
kifejezések expliciten tartalmazzák az elektronfelhő sebességnégyzetének 〈𝑣2〉 
időátlagát!  

1,0 
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2.8b 
Határozd meg a nanogolyócska helyettesítő képének 𝑅heat ohmikus ellenállását, amely 
kapcsolatot teremt a fejlődő Joule-hő 𝑃heat teljesítménye és az elektronfelhő I 
áramerőssége között. Számítsd ki 𝑅heat numerikus értékét! 

1,0 

  
A beeső fénynyalábban a rezgő elektronfelhőn való szóródás (újrakibocsátás) következtében 
valamekkora 𝑃scat időátlagolt teljesítmény formájában veszteség lép fel. 𝑃scat nagysága függ a 
szórócentrum 𝑥0 amplitúdójától, 𝑄 töltésétől, 𝜔p körfrekvenciájától, valamint a fény 
tulajdonságaitól (a 𝑐 fénysebességtől és a vákuum 𝜀0 permittivitásától). E négy változóval kifejezve 

𝑃scat a következő formulával adható meg: 𝑃scat = 𝑄2𝑥02𝜔p
4

12𝜋𝜀0𝑐3
.  

  

2.9 𝑅heat analógiájára határozd meg a fényszórásnak megfelelő ekvivalens 𝑅scat ohmikus 
ellenállást 𝑃scat  felhasználásával! Számítsd ki numerikus értékét is! 1,0 

      
Az előbbiekben tárgyalt helyettesítő áramköri elemeket sorosan RLC-körbe kapcsolva, majd az 
áramkört (a beeső fény 𝐸0 térerőssége által meghatározott amplitúdójú) 𝑉 = 𝑉0 cos(𝜔p𝑡) váltakozó 
feszültségre kapcsolva megkapjuk az oszcilláló térbe helyezett ezüst nanogolyócska modelljét. 
  

2.10a 
Ismert adatok felhasználásával határozd meg a 𝑃heat  és 𝑃scat időátlagolt teljesítmény-
veszteségek kifejezéseit, valamint az 𝜔 = 𝜔𝑝 körfrekvenciájú beeső fény 𝐸0 
amplitúdóját! 

1,2 

2.10b Határozd meg 𝐸0, 𝑃heat, és 𝑃scat numerikus értékét! 0,3 
      
Gőzfejlesztés fénnyel 
Az ezüst nanogolyócskákat 𝑛np = 7.3 × 1015 m−3 koncentrációban elkeverjük vízben, majd a 
keveréket egy téglatest alakú, ℎ × ℎ × 𝑎 = 10 × 10 × 1.0 cm3 méretű, átlátszó tartályba töltjük, 
végül a rendszert merőleges beeséssel plazmon frekvenciájú, 𝑆 = 1.00 MW m−2 intenzitású fénnyel 
világítjuk meg (lásd a 2.1(e) ábrát!). A víz hőmérséklete 𝑇wa = 20 ∘C és a megfigyelésekkel 
összhangban feltehetjük, hogy stacionárius állapotban a nanogolyócskák Joule-hője teljes egészében 
𝑇st = 110 ∘C hőmérsékletű gőz keletkezésére fordítódik, a teljes víztömeg hőmérsékletének 
növelése nélkül.  
  
A plazmonos gőzfejlesztő készülék 𝜂 termodinamikai hatásfokát a 𝜂 = 𝑃st/𝑃tot  hányadosként 
definiáljuk, ahol 𝑃st  az egész tartályban a gőz fejlesztésére fordítódó hőteljesítmény, 𝑃tot pedig a 
tartályra eső fény összes teljesítménye. 
 
Bármely kiszemelt nanogolyócskát az idő legnagyobb részében víz helyett gőz veszi körül, ezért 
tárgyalható úgy, mintha vákuumban helyezkedne el. 
 

2.11a 
Számítsd ki numerikusan a plazmonos gőzfejlesztő készülék által az időegység alatt 
előállított vízgőz 𝜇st tömegét a plazmon frekvenciájú, 𝑆 intenzitású fénnyel való 
besugárzás folyamán! 

0.6 

2.11b Számítsd ki numerikusan a plazmonos gőzfejlesztő készülék 𝜂 termodinamikai 
hatásfokát! 0.2 
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