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A talajkolloidok jellemzése (10 pont)
A kolloidtudomány felhasználható a talajrészecskék vizsgálatára, mert a talajszemcsék jó része a kollo-
idokra jellemző mikrométeres mérettartományba esik. Például a Brown-mozgás (a kolloid részecskék
véletlenszerű mozgása) felhasználható a részecskék méretének meghatározására.

Part A.: Kolloid részecskék mozgása (1,6 pont)
Egy 𝑀 tömegű kolloid részecske egydimenziós Brown-mozgását elemezzük. A részecske 𝑣(𝑡) sebessé-
gére felírt mozgásegyenlet a következő:

𝑀 ̇𝑣 = −𝛾𝑣(𝑡) + 𝐹(𝑡) + 𝐹ext(𝑡), (1)

ahol 𝛾 a súrlódási együttható, 𝐹(𝑡) a vízmolekulák véletlenszerű ütközéséből eredő erő, és 𝐹ext(𝑡) egy
külső erő. Az A. részben feltételezzük, hogy 𝐹ext(𝑡) = 0.

A.1 Tételezzük fel, hogy egy vízmolekula ütközik a részecskével a 𝑡 = 𝑡0 időpontban,
miközben 𝐼0 impulzust ad át neki, de az ütközést követően 𝐹(𝑡) = 0 . Ha az
ütközés előtt 𝑣(𝑡) = 0 , az ütközés után 𝑣(𝑡) = 𝑣0𝑒−(𝑡−𝑡0)/𝜏 alakú 𝑡 > 𝑡0 esetén.
Határozdmeg a 𝑣0 és a 𝜏 értékét, felhasználva 𝐼0-t és az (1) egyenletben szereplő
szükséges mennyiségeket!
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A következőkben a 𝜏 -t használd a válaszaidban.

A.2 Valójában a vízmolekulák egymás után ütköznek a részecskékkel. Tegyük fel,
hogy az 𝑖-edik ütközés 𝐼𝑖 impulzust ad át a részecskéknek a 𝑡𝑖 időpontban. Felté-
telezzük, hogy a 𝑡 > 0 időpillanatokban a részecske sebessége 𝑣(𝑡) függvénnyel
írható le, továbbá feltételezzük, hogy v(0)=0. Határozd meg a 𝑣(𝑡)-t! Írj fel egy
egyenlőtlenséget is, amely kijelöli, hogy adott 𝑡 eseténmilyen tartományba eső
𝑡𝑖-ket kell figyelembe venni.
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Part B.: Az effektív mozgásegyenlet (1,8 pont)
Az eddigi eredmények aztmutatják, hogy egy részecske 𝑣(𝑡) és 𝑣(𝑡′) sebességei tekinthetők korrelálatlan-
nak és véletlen értékűnek, ha |𝑡−𝑡′| ≫ 𝜏 . Ezek alapján bevezetünk egy elméleti modellt, mely közelítőleg
leírja az egydimenziós Brown-mozgást. A modell szerint a sebesség véletlenszerűen változik minden
𝛿 (≫ 𝜏) időintervallumban.

𝑣(𝑡) = 𝑣𝑛 (𝑡𝑛−1 < 𝑡 ≤ 𝑡𝑛), (2)

ahol 𝑡𝑛 = 𝑛𝛿 (𝑛 = 0, 1, 2, ⋯) és 𝑣𝑛 egy véletlen sebességérték. Ezek kielégítik az alábbiakat:

⟨𝑣𝑛⟩ = 0, ⟨𝑣𝑛𝑣𝑚⟩ = {𝐶 (𝑛 = 𝑚),
0 (𝑛 ≠ 𝑚), (3)

ahol a 𝐶 paraméter függ a 𝛿 megválasztásától. Itt ⟨𝑋⟩ jelöli az 𝑋 várható értékét. Ezen azt értjük, hogy
ha végtelen sokszor sorsolunk egy 𝑋 véletlen számot, akkor annak átlaga ⟨𝑋⟩ lesz.
Most a részecske Δ𝑥(𝑡) = 𝑥(𝑡)−𝑥(0) elmozdulását vizsgáljuk a 𝑡 = 𝑁𝛿 időpillanatban, ahol 𝑁 egész szám.
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B.1 Határozd meg a ⟨Δ𝑥(𝑡)⟩ és a ⟨Δ𝑥(𝑡)2⟩ várható értékeket a 𝐶, a 𝛿 és a 𝑡 paramé-
terek függvényében!
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B.2 A ⟨Δ𝑥(𝑡)2⟩ mennyiséget átlagos négyzetes elmozdulásnak (MSD) nevezik. Ez
egy jellegzetes, megfigyelhető paramétere a Brown-mozgásnak, amely a 𝛿 → 0
határesetnek felel meg. Ez alapján beláthatók az alábbi arányosságok: 𝐶 ∝ 𝛿𝛼

és ⟨Δ𝑥(𝑡)2⟩ ∝ 𝑡𝛽. Határozd meg az 𝛼 és a 𝛽 kitevőket!
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Part C.: Elektroforézis (2.7 pont)
Az alábbiakban az elektroforézist, azaz a töltött részecskék elektromos térrel történő áramoltatását tár-
gyaljuk. A kolloid részecskék tömege 𝑀 és töltésük 𝑄 (> 0). A kolloid részecskék oldata egy keskeny,
𝐴 keresztmetszetű csőben helyezkedik el (1. (a) ábra). A részecskék közötti kölcsönhatást, a cső falának
hatását, a folyadék és a benne lévő ionok hatását, valamint a gravitációt hagyjuk figyelmen kívül.

1. ábra: A part C. során használt összeállítás.

Ha a közegben homogén 𝐸 elektromos mezőt kapcsolunk be 𝑥-irányban, a részecskék mozogni kezde-
nek, és 𝑛(𝑥) koncentrációjuk (részecskeszám térfogategységenként) nem lesz egyenletes (1. (b) ábra).
Az 𝐸 elektromos tér kikapcsolásakor ez az egyenetlenség fokozatosan megszűnik a részecskék Brown-
mozgásának köszönhetően. Ha az 𝑛(𝑥) nemegyenletes, a jobbra és balramozgó részecskék száma eltér-
het (1.(c) ábra). Ez részecskeáramot generál az 𝑥 tengely mentén. A 𝐽𝐷(𝑥) részecskeáram-sűrűség meg-
adja, hogy egységnyi idő alatt mennyi részecske halad át az 𝑥 koordinátájú helyen felvett, 𝑥-tengelyre
merőleges sík egységnyi felületelemén. A részecskeáram-sűrűség kielégíti az alábbi egyenletet:

𝐽𝐷(𝑥) = −𝐷𝑑𝑛
𝑑𝑥(𝑥), (4)

Ahol 𝐷 -t a diffúziós együtthatónak nevezzük.

Most az egyszerűség kedvéért tegyük fel, hogy a részecskék felének +𝑣 a másik felének −𝑣 sebessége
van. Legyen 𝑁+(𝑥0) azon részecskék száma, amelyek olyan sebességgel rendelkeznek, hogy képesek
áthaladni balról jobbra az 𝑥0 koordinátájú sík egységnyi felületén egységnyi idő alatt.

Ahhoz, hogy a +𝑣 sebességű részecskék egy 𝛿 időintervallumon belül áthaladjanak a 𝑥0 síkon, az 1.(c)
ábra sötétített tartományában kell lenniük. Mivel 𝛿 kicsi, részecskesűrűség közelíthető a 𝑛(𝑥) ≃ 𝑛(𝑥0) +
(𝑥 − 𝑥0) 𝑑𝑛

𝑑𝑥 (𝑥0) formában 𝑥0 kicsiny környezetében.
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C.1 Fejezd ki 𝑁+(𝑥0) -t a 𝑣, 𝛿, 𝑛(𝑥0), és 𝑑𝑛
𝑑𝑥 (𝑥0) mennyiségek közül szükségesek fel-

használásával.
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Definiáljuk −𝑣 sebességgel rendelkező részecskékre a 𝑁−(𝑥0) - t az 𝑁+(𝑥0) definíciójával analóg módon.
Ennek segítségével megkaphatjuk részecskeáram-sűrűséget a𝐽𝐷(𝑥0) = ⟨𝑁+(𝑥0) − 𝑁−(𝑥0)⟩ összefüggés
segítségével. A (3) egyenlet szerint a sebességnégyzet várható értéke ⟨𝑣2⟩ = 𝐶.

C.2 Határozd meg a 𝐽𝐷(𝑥0) áramsűrűséget a 𝐶, 𝛿, 𝑛(𝑥0) és a 𝑑𝑛
𝑑𝑥 (𝑥0) mennyiségek

közül szükségesek segítségével! Ennek és a (4) egyenletnek a felhasználásával
fejezd ki a 𝐷 diffúziós állandót a 𝐶 és a 𝛿 segítségével, és fejezd ki a ⟨Δ𝑥(𝑡)2⟩ -et
a 𝐷 és a 𝑡 paraméterek felhasználásával.
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A következőkben aΠ ozmózis nyomás hatását tárgyaljuk. Az ozmózis nyomást aΠ = 𝑛
𝑁𝐴

𝑅𝑇 = 𝑛𝑘𝑇 össze-
függés adja meg, ahol 𝑁𝐴 az Avogadro-állandó, 𝑅 a gázállandó, 𝑇 a hőmérséklet és 𝑘 = 𝑅

𝑁𝐴
a Boltzmann-

állandó. Tekintsük az 𝐸 elektromos tér hatására kialakuló inhomogén koncentrációt (1.(b) ábra). Mivel
az 𝑛(𝑥) koncentráció függ az 𝑥-től, így a Π(𝑥) ozmózis nyomás is helyfüggő. Ekkor a Π(𝑥)és a Π(𝑥 + Δ𝑥)
okozta erők eredőjét kiegyenlíti a részecskékre ható 𝐸 mezőből származó összes erő (2. ábra). Mivel Δ𝑥
igen kicsi, így az 𝑛(𝑥) ebben a tartományban állandónak tekinthető, míg a koncentráció megváltozása az
alábbi módon fejezhető ki: 𝑛(𝑥 + Δ𝑥) − 𝑛(𝑥) ≃ Δ𝑥 𝑑𝑛

𝑑𝑥 (𝑥)

2. ábra: Erőegyensúly.

C.3 Fejezd ki a koncentráció 𝑑𝑛
𝑑𝑥 (𝑥) deriváltját az 𝑛(𝑥) , 𝑇 , 𝑄, 𝐸 és 𝑘 paraméterek

segítségével.
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Vizsgáljuk most az áramsűrűség egyensúlyát. A Brown-mozgásból eredő 𝐽𝐷(𝑥) áramsűrűségen kívül
létezik egy elektromos mezőből eredő áramsűrűség is, melyre 𝐽𝑄(𝑥)formában hivatkozunk. Ezen áram-
sűrűséget a következőképp számíthatjuk ki:

𝐽𝑄(𝑥) = 𝑛(𝑥)𝑢, (5)

ahol 𝑢 a mező által mozgatott részecskék végsebessége.

C.4 Az 𝑢 meghatározásához az (1) egyenletet használjuk, feltételezve, hogy a ré-
szecskékre az elektromos tér 𝐹ext(𝑡) = 𝑄𝐸 erővel hat. Mivel 𝑣(𝑡) fluktuál, ezért
feltételezzük, hogy ⟨𝑣(0)⟩ = 0. Tudjuk továbbá, hogy⟨𝐹(𝑡)⟩ = 0. Határozzukmeg
a részecskék végsebességét az alábbi határérték számítással 𝑢 = lim𝑡→∞⟨𝑣(𝑡)⟩.
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C.5 A részecskeáram-sűrűségek egyensúlya a következőképp írható fel: 𝐽𝐷(𝑥) +
𝐽𝑄(𝑥) = 0 Fejezzük ki a 𝐷 diffúziós együtthatót a 𝑘, 𝛾, és 𝑇 mennyiségekkel!
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Part D.: rész: Közepes négyzetes elmozdulás (2,4 pont)
Tegyük fel, hogy egy magányos, gömb alakú, 𝑎 = 5.0 𝜇m sugarú kolloid részecske Brown-mozgását
figyeljükmeg vízben. A 3. ábra aΔ𝑥 elmozdulások hisztogramjátmutatja. Az elmozdulásokat x-irányban
mértük Δ𝑡 = 60 s időintervallumok alatt. A súrlódási együtthatót a 𝛾 = 6𝜋𝑎𝜂 összefüggés adja, ahol a víz
viszkozitása 𝜂 = 8.9 × 10−4 Pa ⋅ s, a hőmérséklet pedig 𝑇 = 25 ∘C volt.

3. ábra: Az elmozdulások hisztogramja

D.1 Becsüld meg az 𝑁𝐴 értékét anélkül, hogy tudomásul vennénk, hogy ez az
Avogadro-állandó. A becslést két értékes számjegyig végezd a 3. ábra ada-
taiból. A gázállandó 𝑅 = 8.31 J/K ⋅ mol . Ne használd a Boltzmann állandó Ál-
talános Instrukciókban leírt értékét! Előfordulhat, hogy a Boltzmann állandó
irodalmi értékétől eltérő eredményt kapsz.
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Most kiterjesztjük a B részben szereplő modellt annak érdekében, hogy leírjuk egy 𝑄 töltéssel rendel-
kező részecske mozgását az 𝐸 elektromos térben. A (2) egyenletben definiált 𝑣(𝑡) részecske sebességet
𝑣(𝑡) = 𝑢 + 𝑣𝑛 (𝑡𝑛−1 < 𝑡 ≤ 𝑡𝑛)-vel kell helyettesíteni, a (3) egyenletnek megfelelő 𝑣𝑛-el. Az 𝑢 pedig az (5)
egyenletben szereplő végsebesség.

D.2 Fejezd ki az ⟨Δ𝑥(𝑡)2⟩ átlagos négyzetes elmozdulást az 𝑢, 𝐷 és a 𝑡 kifejezésekkel!
Állapíts meg, hogy közelítőleg az idő hányadik hatványával arányos az átlagos
négyzetes elmozdulás kis 𝑡 és nagy 𝑡, értékek mellett, valamint állapítsd meg
azt a 𝑡∗ jellemző időt, amikor a hatványfüggvény jellege megváltozik. Vázold az
átlagos négyzetes elmozdulás grafikonját log-log diagramban, feltüntetve a 𝑡∗
hozzávetőleges helyét.
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A következőkben vízben úszó mikrobák mozgását fogjuk vizsgálni, az egyszerűség kedvéért egydimen-
zióban (4.(b) ábra). Tekintsük őket gömb alakú részecskéknek, amelyek sugara 𝑎. Vagy +𝑢0 vagy −𝑢0
sebességgel úsznak, az előjelet minden 𝛿0 időintervallumban véletlenszerűen választják meg, korrelá-
ció nélkül. A megfigyelt mozgás az úszásból eredő elmozdulások és a gömb alakú részecske Brown-
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mozgásából eredő elmozdulások eredője.

4. ábra: a) A mikrobák mozgása. (b) A mozgás egydimenziós modellje.

D.3 Az 5. ábrán láthatjuk amikrobák ⟨Δ𝑥(𝑡)2⟩ átlagos négyzetes elmozdulását az idő
függvényében. A függvény az eltérő időintervallumokban eltérő hatványfügg-
vény szerint változik. A kis t értékek, a közepes, valamint a nagy t értékek tarto-
mányát egy-egy szaggatott vonal jelöli. Állapítsd meg az idő hatványkitevőjét
az egyes tartományokon, és fejezd ki az időfüggést a 𝐷, 𝑢0, 𝛿0, és 𝑡 paraméterek
közül szükségesek segítségével!

5. ábra: A mikrobák átlagos négyzetes elmozdulása.
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Part E.: Víztisztítás (1,5 pont)
Az alábbiakban kolloid jellegű talajrészecskéket is tartalmazó víz tisztítását tárgyaljuk, a talajrészecskék
koagulációját elősegítő elektrolitok hozzáadásával. A részecskék a Van der Waals-erő és az elektroszta-
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tikus erő révén lépnek kölcsönhatásba egymással. Ez utóbbi magában foglalja mind a felületi tölté-
sek, mind a az ellentétesen töltött ionok hatását. (A részecskét körülvevő, ellentétes töltésű ionréteget
antiion-kettősrétegnek hívjuk. 6.(a) ábra) Ennek eredményeképpen a részecskék 𝑑 távolságára a követ-
kező kölcsönhatási potenciál (6. ábra (b)) adódik:

𝑈(𝑑) = −𝐴
𝑑 + 𝐵𝜖(𝑘𝑇 )2

𝑞2 𝑒−𝑑/𝜆, (6)

ahol 𝐴 és 𝐵 és pozitív konstansok, 𝜖 a víz dielektromos állandója, és 𝜆 a kettősréteg vastagsága. Feltéte-
lezve, hogy az ionok töltése ±𝑞, az alábbiakat kapjuk:

𝜆 = √ 𝜖𝑘𝑇
2𝑁𝐴𝑞2𝑐 , (7)

ahol 𝑐 az ion moláris koncentrációja.

6. ábra: a) Kolloid részecskék és az antiionok felületi töltései. (b) A 𝑑� távolságmeghatározása.

E.1 Ha nátrium-kloridot (NaCl) adunk a szuszpenzióhoz, az a kolloid részecskék ko-
agulációját eredményezi. Határozdmeg a koagulációhoz szükséges legkisebb 𝑐
NaCl-koncentrációt! Elég, ha két részecskét vizsgálunk csupán, és eltekintünk a
hőmozgástól, azaz 𝐹(𝑡) = 0 az (1.) egyenletben. Feltételezzük továbbá, hogy az
adott potenciálból származó erőhöz tartozó végsebességet a részecske azonnal
eléri.
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