
Fontos tudnivalók

• Az elméleti forduló id®tartama 5 óra. A feladatok hibátlan megoldásával összesen 30 pontot lehet sze-

rezni, a részpontszámok az egyes kérdések után zárójelben fel vannak tüntetve. Figyelem! Az összes

feladathoz egyetlen, közös adattáblázat tartozik, ami a feladatokban szerepl® konstansokat, �zikai ál-

landókat tartalmazza (lásd a lap alját).

• A részletes számolásokat a rendelkezésre álló fehér lapokon végezd! Lehet®leg minél kevesebb szöveget

használj, megoldásaidat igyekezz f®leg egyenletekkel, számokkal, szimbólumokkal és gra�konokkal kife-

jezni! Ha azt szeretnéd, hogy megoldásod egy része ne kerüljön értékelésre, tedd zárójelbe azt a részt,

és egy vonallal húzd át! (Az áthúzott, de helyes megoldást nem tudjuk értékelni.)

• Minden lapra írd rá a nevedet! Ügyelj rá, hogy minden feladat megoldása külön lapra kerüljön, mert a

különböz® feladatokat más-más javító fogja értékelni.

• Végeredményeidet a feladatokhoz tartozó válaszlap megfelel® mez®jébe is írd be! Mindenképp sza-

kíts id®t a válaszlap kitöltésére! Azokhoz a feladatokhoz tartozó mez®ket, amelyekkel érdemben nem

foglalkoztál, hagyd üresen!

• A verseny teljesen egyéni. A feladatok megoldásához író- és rajzeszközökön, valamint kétsoros (nem

gra�kus) számológépen kívül semmilyen segédeszköz (könyv, füzet, internet, számítógép, mobiltelefon

stb.) nem használható.

Fizikai állandók táblázata

vákuumbeli fénysebesség: c = 2,998 · 108 m/s

a vákuum permittivitása: ε0 = 8,854 · 10−12 C/(Vm)

a vákuum permeabilitása: µ0 = 4π · 10−7 Vs/(Am)

gravitációs állandó: G = 6,67 · 10−11 m3/(kg s2)

elemi töltés: e = 1,602 · 10−19 C

Planck-állandó: h = 6,626 · 10−34 Js

elektron tömege: me = 9,109 · 10−31 kg

neutron tömege: mn = 1,675 · 10−27 kg

a Nap tömege: M⊙ = 1,989 · 1030 kg



XVII. Román-Magyar El®olimpia

Pécs, 2014. június 1.

1. feladat. (Ez a feladat két független, kisebb részb®l áll.)

1.A. A tökéletes lökés. A biliárdasztalon egy R sugarú biliárdgolyó nyugszik. A golyó középpontját

jelöljük C-vel, az asztallal érintkez® pontját pedig P -vel.

1.A.1. Szeretnénk a golyót úgy meglökni, hogy a pillanatszer¶ indítást követ®

köszörül® mozgás befejez®désekor éppen megálljon. Ehhez az asztal síkjától szá-

mított h magasságban rövid er®lökést adunk a golyónak úgy, hogy a kifejtett F

er® hatásvonala benne legyen az er® T támadáspontja, valamint a C és P pontok

által meghatározott síkban. Mekkora legyen az ábrán látható α szög ahhoz, hogy

tervünk sikerüljön? (1,5 p)

1.A.2. Ha az er®lökés hatásvonala nincs benne a T , P , C pontok által meghatározott síkban, akkor

elérhet®, hogy a lökés után a biliárdgolyó szögsebességének mindhárom (függ®leges és két vízszintes) kom-

ponense nullától különböz® érték legyen (a biliárdjátékosok ezt Coriolis-massé lökésnek hívják). Ebben az

esetben milyen alakú pályán mozog a golyó a köszörülés befejeztéig? (Tételezzük fel, hogy a golyó mindvégig

egyetlen ponton érintkezik az asztallal.)

Útmutatás: Vizsgáljuk a golyó talajjal érintkez® P pontjának sebességét! (3,5 p)

1.B. Szonolumineszcencia. Ha egy álló folyadékban kell®en er®s hanghullámot hozunk létre, a fo-

lyadékban apró buborékok (üregek) keletkeznek. Ezekben a parányi buborékokban igen alacsony nyomású

g®z és egyéb gázok találhatók nemegyensúlyi állapotban. Ezért a buborékok a környez® folyadék nyomása

következtében nagyon rövid id® alatt igen kis méret¶re roppannak össze, végül fényt bocsátanak ki. Ez a

szonolumineszcencia jelensége.

Egy laboratóriumi kísérlet során vízben egybuborékos szonolumineszcenciát hozunk létre. A buborék

kezdeti sugara R0 = 40 µm, a buborék falának kezdeti sebessége zérus. A környez® víz p = 105 Pa nyomása

hatására a buborék R = 0,5 µm sugarúra omlik össze, majd folytonos spektrumú elektromágneses sugárzást

bocsát ki nagyon kis energiáktól egy bizonyos Emax maximális értékig terjed® energiatartományban. Azoknak

a kisugárzott fotonoknak a ∆N számát, melyek energiája az (E,E +∆E) energiaintervallumba esik, a

∆N = α
∆E

E

összefüggés adja meg, ahol az α tényez® értéke ennél a buboréknál a kísérlet tanúsága szerint 3,3 · 106.

1.B.1. Az összeroppanás során a buborékot körülvev® víz mozgásba jön. Feltételezve, hogy a víz összes

mozgási energiája a fenti energiaeloszlású elektromágneses sugárzássá alakul, mekkora lehet a sugárzás leg-

nagyobb frekvenciájú fotonjainak energiája? (2,5 p)

1.B.2. Mekkora a buborék sugara abban a pillanatban, amikor falának sebessége eléri a hangsebességet?

A víz s¶r¶sége ϱ = 103 kg/m3, a vízbeli hangsebesség c = 1500 m/s. (2,5 p)
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2. feladat. Pulzárok, magnetárok

A pulzárok er®s mágneses térrel rendelkez®, gyorsan forgó neutroncsillagok. A forgás miatt id®ben változó

mágneses tér alakul ki körülöttük, melynek következtében elektromágneses sugárzást bocsátanak ki, így

tengely körüli forgásuk folyamatosan lassul. Ebben a feladatban a pulzárok forgásának dinamikájával, és

mágneses terük szerkezetével foglalkozunk.

2.1. A neutroncsillagok átlags¶r¶sége nagyságrendileg akkora, mint a nehéz atommagoké. Ismert, hogy

egy A tömegszámú nehéz atommag r sugarát az r = r0A
1/3 összefüggés adja meg, ahol r0 = 1,2 · 10−15 m,

állandó érték. A fenti kifejezés segítségével adjunk nagyságrendi becslést a neutroncsillagok ϱ s¶r¶ségére,

kg/m3 egységekben. (A valóságban a neutroncsillagok s¶r¶sége ennek az értéknek 2-3-szorosa.) (0,5 p)

2.2. Egy gyorsan forgó neutroncsillag szögsebessége nem lehet tetsz®legesen nagy érték, ellenkez® esetben

a forgás a csillag szétszakadását eredményezné. Adjunk nagyságrendi becslést egy ϱ s¶r¶ség¶ neutroncsillag

lehetséges maximális ωmax szögsebességére! Határozzuk meg ωmax számszer¶ értékét is a 2.1. pontban kapott

eredményt felhasználva. (1,0 p)

A pulzárok lassulási ütemének vizsgálatához tekintsük a következ®, egyszer¶

modellt. Legyen a pulzár egy M tömeg¶, R sugarú, ω szögsebességgel forgó,

egyenletes tömegeloszlású gömb, melynek középpontjában a gömbbel együtt-

forgó, állandó nagyságú, m dipólnyomatékú mágneses dipólus helyezkedik el

úgy, hogy m és ω mer®legesek egymásra.

2.3. Elméleti megfontolások szerint egy forgó mágneses dipólus által kisugárzott teljesítményt a

P =
1

6π
µα
0 |m|βωγcδ

alakban kereshetjük, ahol µ0 a vákuum permeabilitása, c a vákuumbeli fénysebesség. Határozzuk meg az

ismeretlen α, β, γ és δ hatványkitev®k értékét! (1,0 p)

2.4. Adjuk meg a pulzár periódusidejének Ṫ növekedési ütemét1 a pulzár T periódusidejével, valamint

az M , R, és m = |m| mennyiségekkel kifejezve, feltételezve, hogy a pulzár energiájának csökkenését teljes

egészében a dipólsugárzás okozza. (2,0 p)

2.5. A Rák-köd közepén elhelyezked® Crab pulzár tengely körüli forgásának periódusideje a mérések

szerint T = 33 ms, a periódusid® növekedési üteme pedig Ṫ = 4 · 10−13. Legfeljebb mekkora lehet a Crab

pulzár kora, ha tömege (a neutroncsillagok között standardnak számító)M = 1,4M⊙ (itt M⊙ a Nap tömege),

sugara pedig R = 10 km? A választ adjuk meg paraméteresen és számszer¶leg is! (2,0 p)

2.6. Az univerzum jelenleg ismert leger®sebb mágneses objektumai a magnetárok. Ezek rendkívül er®s

mágneses térrel rendelkez® pulzárok. Az m mágneses dipólmomentum és a csillag R sugarának felhasználá-

sával adjuk meg a magnetár felszínén mérhet® leger®sebb mágneses tér Bmax indukcióját!

Határozzuk meg Bmax értékét számszer¶en is az R = 10 km sugarú és M = 1,4M⊙ tömeg¶ SGR1806�20

jel¶ magnetár esetében, amely tengely körüli forgásának periódusideje T = 7,5 s, a periódusid® növekedési

üteme pedig Ṫ = 8 · 10−11. (2,0 p)

1Ebben a feladatban és a továbbiakban az x �zikai mennyiség változási gyorsaságát (id® szerinti deriváltját) a mennyiség

jele fölé írt ponttal jelöljük:

ẋ = lim
∆t→0

∆x

∆t
=

dx

dt
.
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2.7. Ismert, hogy homogén mágneses térben az indukcióvektorra mer®legesen mozgó elektron körpályára

kényszerül. Ha a mágneses mez® er®s, az elektron viselkedése kvantumossá válik, és csak bizonyos energiájú

állapotai lesznek megengedettek. A kvantumelektrodinamika szerint, ha tovább növeljük a mágneses indukció

nagyságát, egy bizonyos Bkrit kritikus érték körül a klasszikusan körpályán mozgó elektron sebessége már

az alapállapotban is relativisztikusan naggyá válik. Ilyen er®s mágneses térben érdekes, új �zikai folyamatok

mehetnek végbe: például elektron-pozitron párok keletkezhetnek, és végbemehetnek foton-foton szóródások

is (ami az elektrodinamikai szuperpozíciós elv sérülését jelenti).

Becsüljük meg Bkrit nagyságrendjét! Állapítsuk meg, hogyan viszonyul Bkrit az SGR1806�20 jel¶ mag-

netár felszínén mérhet® Bmax értékhez? (1,5 p)
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3. feladat: Nanogolyócska csapdázása lézercsipesszel.

A lézercsipesz egy olyan laboratóriumi berendezés, amelyben a tér egy kis tartományában fókuszált

lézernyalábbal lehet mikroszkopikus méret¶ testeket csapdázni (�megfogni�), mozgatni. A m¶ködés alapelve

az, hogy a fókuszfoltban kialakuló, inhomogén intenzitású tartományban olyan er® hat a csapdázni kívánt

testre, amely a kis intenzitású hely fel®l a nagy intenzitású hely felé mutat. Ez a csapdázó er® a lézerfény

hullámhosszánál sokkal nagyobb méret¶ testek esetén a geometriai optika törési törvényével magyarázható,

míg a hullámhossznál sokkal kisebb méret¶ (nanoméret¶) testek esetén a maxwelli elektrodinamika alapján

számolható ki. Ebben a feladatban az utóbbi utat kell követnünk: a lézerfény hullámhosszánál sokkal kisebb

méret¶, latexból készült, töltetlen, szigetel® nanogolyócska viselkedését vizsgáljuk lézercsipeszben. A tömör,

m tömeg¶ és R sugarú nanogolyócska homogén, εr relatív dielektromos állandójú anyagból készült. A feladat

megoldása során a nehézségi er® hatása mindvégig elhanyagolható.

1. ábra

Szükségünk lesz arra az ismeretre, hogyan viselkedik a go-

lyócska elektromos térben. Ehhez képzeljük el, hogy a golyócskát

id®ben állandó, homogén, E térer®sség¶ elektromos térbe helyez-

zük. Az elektromos tér hatására a golyócskában homogén P po-

larizáció (elektromos dipólmomentum-s¶r¶ség) és homogén Ein

elektromos térer®sség alakul ki, melyek között a

P = ε0(εr − 1)Ein

összefüggés áll fenn. Megmutatható, hogy a golyócskán kívüli elektromos tér úgy írható le, mintha a ho-

mogén E elektromos tér és egy, a golyócska közepén elhelyezked®, p = P · V dipólmomentumú elektromos

dipólus2terének szuperpozíciója lenne, ahol V a golyócska térfogata.

3.1. Mutassuk meg, hogy a golyócska dipólmomentuma és az E térer®sség között fennáll a

(1) p = αE

összefüggés, és adjuk meg az α tényez® értékét εr és R felhasználásával! (Útmutatás: Vizsgáljuk az elektromos

teret az 1. ábrán látható A pont környékén, a gömbön belül és azon kívül!) (2,5 p)

3.2. Id®független, homogén elektromos térben egy elektromos dipólusra nem hat er®. Felhasználva, hogy

egy indukált p = αE dipólmomentumú dipólus elektrosztatikus energiája az E = (Ex, Ey, Ez) térer®sség¶

pontban −1
2αE

2, mutassuk meg, hogy inhomogén, sztatikus elektromos tér jelenlétében olyan er® hat a

dipólusra, melynek x-komponense

(2) Fx = px
∂Ex

∂x
+ py

∂Ey

∂x
+ pz

∂Ez

∂x
,

és hasonló összefüggés igaz a másik két er®komponensre is. (1,0 p)

2. ábra

A nanogolyócskát egy er®sen fókuszált, polarizált lézernyalábba helyez-

zük (2. ábra). A lézerfény a fókusztartomány minden pontjában x-irányba

haladó, helyr®l-helyre változó amplitúdójú, ω körfrekvenciájú síkhullámmal

közelíthet®. A lézerfény (id®átlagolt) intenzitása a hely függvényében az

I(x, y, z) = I0

(
1− x2

a2
− y2

b2
− z2

b2

)
függvénnyel írható le az |x| ≪ a; |y| ≪ b; |z| ≪ b tartományban (a, b > 0).

2Egy p dipólmomentumú dipólustól r távolságra az elektromos térer®sséget a következ® formula adja meg:

E(r) =
1

4πε0

3(pr)r − p|r|2

|r|5 .
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3.3. Adjuk meg a lézerfény E(x, y, z) amplitúdóját az I(x, y, z) intenzitás felhasználásával! (1,0 p)

3.4 A golyócskát a lézerfény id®ben változó elektromos tere polarizálja, a pillanatnyi dipólmomentum és

a térer®sség között minden id®pillanatban fennáll az (1) összefüggés. Belátható, hogy egy változó amplitú-

dójú síkhullámban is érvényes a dipólra ható er®t megadó (2) összefüggés. Mutassuk meg, hogy a lézerfény

intenzitásának hely szerinti változása miatt a golyócskára ható er® komponensei

(3) F csapda
x = γ

∂I(x, y, z)

∂x
, F csapda

y = γ
∂I(x, y, z)

∂y
, F csapda

z = γ
∂I(x, y, z)

∂z

alakban írhatók. Fejezzük ki γ értékét α segítségével! (1,5 p)

3.5. Hogyan mozog a nanogolyócska, ha egyensúlyi helyzetéb®l y irányban kicsiny d ≪ b távolsággal

kimozdítjuk? Adjuk meg a mozgást jellemz® paraméter(eke)t I0, b, m és α felhasználásával. (1,0 p)

A nanogolyócskára x-irányban a (3) összefüggéssel leírt F csapda
x er®n kívül fellép még egy, a sugárzási

nyomásból származó F sug er® is. Ennek oka, hogy a golyócska a bees® lézerfény egy részét P sug teljesít-

ménnyel elnyeli, miközben ugyanekkora teljesítménnyel dipólsugárzás formájában ki is sugározza azt. Egy ω

körfrekvenciával rezg® (harmonikusan változó er®sség¶) elektromos dipólus által kisugárzott teljesítményt a

P sug =
µ0|p|2ω4

12πc

összefüggés adja meg, ahol |p| a rezgés során a maximális dipólmomentum. (Az er® kiszámításánál tekint-

hetjük úgy, mintha ezt a teljesítményt a rezg® dipólus izotrop módon sugározná ki.)

3.6. Adjuk meg a nanogolyócskára ható F sug er® nagyságát az adott pontban mérhet® I(x, y, z) intenzitás,

α és ω segítségével! (1,5 p)

3.7. Határozzuk meg, hogy x-irányban az origótól mekkora ξ távolsággal tolódik el a sugárzási nyomás

hatására a nanogolyócska egyensúlyi helyzete. A választ a lézerfény λ hullámhossza, a golyócska R sugara,

az a paraméter, és az εr relatív permittivitás segítségével adjuk meg. Számítsuk ki az eltolódás értékét

számszer¶en is, ha ismert, hogy λ = 1000 nm, R = 10 nm, a = 20 µm, és εr = 2,5. (1,5 p)
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